ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel color constancy approach, called Bag of Color Features (BoCF), building upon Bag-of-Features pooling. The proposed method substantially reduces the number of parameters needed for illumination estimation. At the same time, the proposed method is consistent with the color constancy assumption stating that global spatial information is not relevant for illumination estimation and local information ( edges, etc.) is sufficient. Furthermore, BoCF is consistent with color constancy statistical approaches and can be interpreted as a learning-based generalization of many statistical approaches. To further improve the illumination estimation accuracy, we propose a novel attention mechanism for the BoCF model with two variants based on self-attention. BoCF approach and its variants achieve competitive, compared to the state of the art, results while requiring much fewer parameters on three benchmark datasets: ColorChecker RECommended, INTEL-TUT version 2, and NUS8.
In this paper, we propose a novel unsupervised color constancy method, called Probabilistic Color Constancy (PCC). We define a framework for estimating the illumination of a scene by weighting the contribution of different image regions using a graph
In this paper, we study the importance of pre-training for the generalization capability in the color constancy problem. We propose two novel approaches based on convolutional autoencoders: an unsupervised pre-training algorithm using a fine-tuned en
We present Fast Fourier Color Constancy (FFCC), a color constancy algorithm which solves illuminant estimation by reducing it to a spatial localization task on a torus. By operating in the frequency domain, FFCC produces lower error rates than the pr
Temporal Color Constancy (CC) is a recently proposed approach that challenges the conventional single-frame color constancy. The conventional approach is to use a single frame - shot frame - to estimate the scene illumination color. In temporal CC, m
In this paper, we present CLCC, a novel contrastive learning framework for color constancy. Contrastive learning has been applied for learning high-quality visual representations for image classification. One key aspect to yield useful representation