ﻻ يوجد ملخص باللغة العربية
In this paper, we describe a new large dataset for illumination estimation. This dataset, called INTEL-TAU, contains 7022 images in total, which makes it the largest available high-resolution dataset for illumination estimation research. The variety of scenes captured using three different camera models, namely Canon 5DSR, Nikon D810, and Sony IMX135, makes the dataset appropriate for evaluating the camera and scene invariance of the different illumination estimation techniques. Privacy masking is done for sensitive information, e.g., faces. Thus, the dataset is coherent with the new General Data Protection Regulation (GDPR). Furthermore, the effect of color shading for mobile images can be evaluated with INTEL-TAU dataset, as both corrected and uncorrecte
In this paper, we provide a novel dataset designed for camera invariant color constancy research. Camera invariance corresponds to the robustness of an algorithms performance when run on images of the same scene taken by different cameras. Accordingl
In this paper, we propose a novel unsupervised color constancy method, called Probabilistic Color Constancy (PCC). We define a framework for estimating the illumination of a scene by weighting the contribution of different image regions using a graph
Temporal Color Constancy (CC) is a recently proposed approach that challenges the conventional single-frame color constancy. The conventional approach is to use a single frame - shot frame - to estimate the scene illumination color. In temporal CC, m
In this paper, we study the importance of pre-training for the generalization capability in the color constancy problem. We propose two novel approaches based on convolutional autoencoders: an unsupervised pre-training algorithm using a fine-tuned en
We present Fast Fourier Color Constancy (FFCC), a color constancy algorithm which solves illuminant estimation by reducing it to a spatial localization task on a torus. By operating in the frequency domain, FFCC produces lower error rates than the pr