ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective perturbation theory for linear operators

61   0   0.0 ( 0 )
 نشر من قبل Benoit Kloeckner
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Beno^it Kloeckner




اسأل ChatGPT حول البحث

We propose a new approach to the spectral theory of perturbed linear operators , in the case of a simple isolated eigenvalue. We obtain two kind of results: radius bounds which ensure perturbation theory applies for perturbations up to an explicit size, and regularity bounds which control the variations of eigendata to any order. Our method is based on the Implicit Function Theorem and proceeds by establishing differential inequalities on two natural quantities: the norm of the projection to the eigendirection, and the norm of the reduced resolvent. We obtain completely explicit results without any assumption on the underlying Banach space. In companion articles, on the one hand we apply the regularity bounds to Markov chains, obtaining non-asymptotic concentration and Berry-Ess{e}en inequalities with explicit constants, and on the other hand we apply the radius bounds to transfer operator of intermittent maps, obtaining explicit high-temperature regimes where a spectral gap occurs.

قيم البحث

اقرأ أيضاً

This work offers a new prospective on asymptotic perturbation theory for varying self-adjoint extensions of symmetric operators. Employing symplectic formulation of self-adjointness we obtain a new version of Krein formula for resolvent difference wh ich facilitates asymptotic analysis of resolvent operators via first order expansion for the family of Lagrangian planes associated with perturbed operators. Specifically, we derive a Riccati-type differential equation and the first order asymptotic expansion for resolvents of self-adjoint extensions determined by smooth one-parameter families of Lagrangian planes. This asymptotic perturbation theory yields a symplectic version of the abstract Kato selection theorem and Hadamard-Rellich-type variational formula for slopes of multiple eigenvalue curves bifurcating from an eigenvalue of the unperturbed operator. The latter, in turn, gives a general infinitesimal version of the celebrated formula equating the spectral flow of a path of self-adjoint extensions and the Maslov index of the corresponding path of Lagrangian planes. Applications are given to quantum graphs, periodic Kronig-Penney model, elliptic second order partial differential operators with Robin boundary conditions, and physically relevant heat equations with thermal conductivity.
We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings, while only rough estimates were available for the next eigenvalues. Under some geometric assumptions, we go beyond the critical eigenvalue number and give a precise asymptotics of any individual eigenvalue by establishing a link with an effective Schrodinger-type operator on the boundary of the domain with boundary conditions at the corners.
We introduce the concept of essential numerical range $W_{!e}(T)$ for unbounded Hilbert space operators $T$ and study its fundamental properties including possible equivalent characterizations and perturbation results. Many of the properties known fo r the bounded case do emph{not} carry over to the unbounded case, and new interesting phenomena arise which we illustrate by some striking examples. A key feature of the essential numerical range $W_{!e}(T)$ is that it captures spectral pollution in a unified and minimal way when approximating $T$ by projection methods or domain truncation methods for PDEs.
We study the direct and inverse scattering problem for the one-dimensional Schrodinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and prescribed decay to their asymptotics. These results are important for solving the Korteweg-de Vries equation via the inverse scattering transform.
76 - Leonid Golinskii 2021
We study the trace class perturbations of the half-line, discrete Laplacian and obtain a new bound for the perturbation determinant of the corresponding non-self-adjoint Jacobi operator. Based on this bound, we obtain the Lieb--Thirring inequalities for such operators. The spectral enclosure for the discrete spectrum and embedded eigenvalues are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا