ترغب بنشر مسار تعليمي؟ اضغط هنا

First-order asymptotic perturbation theory for extensions of symmetric operators

164   0   0.0 ( 0 )
 نشر من قبل Selim Sukhtaiev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work offers a new prospective on asymptotic perturbation theory for varying self-adjoint extensions of symmetric operators. Employing symplectic formulation of self-adjointness we obtain a new version of Krein formula for resolvent difference which facilitates asymptotic analysis of resolvent operators via first order expansion for the family of Lagrangian planes associated with perturbed operators. Specifically, we derive a Riccati-type differential equation and the first order asymptotic expansion for resolvents of self-adjoint extensions determined by smooth one-parameter families of Lagrangian planes. This asymptotic perturbation theory yields a symplectic version of the abstract Kato selection theorem and Hadamard-Rellich-type variational formula for slopes of multiple eigenvalue curves bifurcating from an eigenvalue of the unperturbed operator. The latter, in turn, gives a general infinitesimal version of the celebrated formula equating the spectral flow of a path of self-adjoint extensions and the Maslov index of the corresponding path of Lagrangian planes. Applications are given to quantum graphs, periodic Kronig-Penney model, elliptic second order partial differential operators with Robin boundary conditions, and physically relevant heat equations with thermal conductivity.

قيم البحث

اقرأ أيضاً

65 - Jeffrey Galkowski 2020
In this article we consider asymptotics for the spectral function of Schrodinger operators on the real line. Let $P:L^2(mathbb{R})to L^2(mathbb{R})$ have the form $$ P:=-tfrac{d^2}{dx^2}+W, $$ where $W$ is a self-adjoint first order differential oper ator with certain modified almost periodic structure. We show that the kernel of the spectral projector, $mathbb{1}_{(-infty,lambda^2]}(P)$ has a full asymptotic expansion in powers of $lambda$. In particular, our class of potentials $W$ is stable under perturbation by formally self-adjoint first order differential operators with smooth, compactly supported coefficients. Moreover, it includes certain potentials with dense pure point spectrum. The proof combines the gauge transform methods of Parnovski-Shterenberg and Sobolev with Melroses scattering calculus.
We propose a new approach to the spectral theory of perturbed linear operators , in the case of a simple isolated eigenvalue. We obtain two kind of results: radius bounds which ensure perturbation theory applies for perturbations up to an explicit si ze, and regularity bounds which control the variations of eigendata to any order. Our method is based on the Implicit Function Theorem and proceeds by establishing differential inequalities on two natural quantities: the norm of the projection to the eigendirection, and the norm of the reduced resolvent. We obtain completely explicit results without any assumption on the underlying Banach space. In companion articles, on the one hand we apply the regularity bounds to Markov chains, obtaining non-asymptotic concentration and Berry-Ess{e}en inequalities with explicit constants, and on the other hand we apply the radius bounds to transfer operator of intermittent maps, obtaining explicit high-temperature regimes where a spectral gap occurs.
Let $Sigmasubsetmathbb{R}^d$ be a $C^infty$-smooth closed compact hypersurface, which splits the Euclidean space $mathbb{R}^d$ into two domains $Omega_pm$. In this note self-adjoint Schrodinger operators with $delta$ and $delta$-interactions supporte d on $Sigma$ are studied. For large enough $minmathbb{N}$ the difference of $m$th powers of resolvents of such a Schrodinger operator and the free Laplacian is known to belong to the trace class. We prove trace formulae, in which the trace of the resolvent power difference in $L^2(mathbb{R}^d)$ is written in terms of Neumann-to-Dirichlet maps on the boundary space $L^2(Sigma)$.
We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings, while only rough estimates were available for the next eigenvalues. Under some geometric assumptions, we go beyond the critical eigenvalue number and give a precise asymptotics of any individual eigenvalue by establishing a link with an effective Schrodinger-type operator on the boundary of the domain with boundary conditions at the corners.
This note aims to give prominence to some new results on the absence and localization of eigenvalues for the Dirac and Klein-Gordon operators, starting from known resolvent estimates already established in the literature combined with the renowned Birman-Schwinger principle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا