ﻻ يوجد ملخص باللغة العربية
We present new Atacama Large Millimeter/sub-millimeter Array (ALMA) 1.3 mm continuum observations of the SR 24S transition disk with an angular resolution $lesssim0.18$ (12 au radius). We perform a multi-wavelength investigation by combining new data with previous ALMA data at 0.45 mm. The visibilities and images of the continuum emission at the two wavelengths are well characterized by a ring-like emission. Visibility modeling finds that the ring-like emission is narrower at longer wavelengths, in good agreement with models of dust trapping in pressure bumps, although there are complex residuals that suggest potentially asymmetric structures. The 0.45 mm emission has a shallower profile inside the central cavity than the 1.3 mm emission. In addition, we find that the $^{13}$CO and C$^{18}$O (J=2-1) emission peaks at the center of the continuum cavity. We do not detect either continuum or gas emission from the northern companion to this system (SR 24N), which is itself a binary system. The upper limit for the dust disk mass of SR 24N is $lesssim 0.12,M_{bigoplus}$, which gives a disk mass ratio in dust between the two components of $M_{mathrm{dust, SR,24S}}/M_{mathrm{dust, SR,24N}}gtrsim840$. The current ALMA observations may imply that either planets have already formed in the SR 24N disk or that dust growth to mm-sizes is inhibited there and that only warm gas, as seen by ro-vibrational CO emission inside the truncation radii of the binary, is present.
Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ~ mm wavelengths. We present the first spatially resolved ~ mm-wavelength images of
Measurements of the gas mass are necessary to determine the planet formation potential of protoplanetary disks. Observations of rare CO isotopologues are typically used to determine disk gas masses; however, if the line emission is optically thick th
Protoplanetary disks are the birthplaces of planetary systems. The evolution of the star-disk system and the disk chemical composition determines the initial conditions for planet formation. Therefore a comprehensive understanding of the main physica
Theoretical models of grain growth predict dust properties to change as a function of protoplanetary disk radius, mass, age and other physical conditions. We lay down the methodology for a multi-wavelength analysis of (sub-)mm and cm continuum interf
We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations for three protoplanetary disks in Taurus at 2.9,mm and comparisons with previous 1.3,mm data both at an angular resolution of $sim0.1$ (15,au for the distance of Taurus).