ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA reveals the anatomy of the mm-sized dust and molecular gas in the HD 97048 disk

59   0   0.0 ( 0 )
 نشر من قبل Catherine Walsh
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Catherine Walsh




اسأل ChatGPT حول البحث

Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ~ mm wavelengths. We present the first spatially resolved ~ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ~640 au. The ALMA data reveal a circular-symmetric dusty disk extending to ~350 au, and a molecular disk traced in CO J=3-2 emission, extending to ~750 au. The CO emission arises from a flared layer with an opening angle ~ 30 deg - 40 deg. HD 97048 is another source for which the large (~ mm-sized) dust grains are more centrally concentrated than the small (~ {mu}m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modelling suggests a decrement in continuum emission within ~50 au, consistent with the cavity size determined from mid-infrared imaging (34 +/- 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ~50, 150, and 300 au, with associated gaps at ~100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ~ 10 - 20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterise the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

قيم البحث

اقرأ أيضاً

The combination of high resolution and sensitivity offered by ALMA is revolutionizing our understanding of protoplanetary discs, as their bulk gas and dust distributions can be studied independently. In this paper we present resolved ALMA observation s of the continuum emission ($lambda=1.3$ mm) and CO isotopologues ($^{12}$CO, $^{13}$CO, C$^{18}$O $J=2-1$) integrated intensity from the disc around the nearby ($d = 162$ pc), intermediate mass ($M_{star}=1.67,M_{odot}$) pre-main-sequence star CQ Tau. The data show an inner depression in continuum, and in both $^{13}$CO and C$^{18}$O emission. We employ a thermo-chemical model of the disc reproducing both continuum and gas radial intensity profiles, together with the disc SED. The models show that a gas inner cavity with size between 15 and 25 au is needed to reproduce the data with a density depletion factor between $sim 10^{-1}$ and $sim 10^{-3}$. The radial profile of the distinct cavity in the dust continuum is described by a Gaussian ring centered at $R_{rm dust}=53,$au and with a width of $sigma=13,$au. Three dimensional gas and dust numerical simulations of a disc with an embedded planet at a separation from the central star of $sim20,$au and with a mass of $sim 6textrm{-} 9,M_{rm Jup}$ reproduce qualitatively the gas and dust profiles of the CQ Tau disc. However, a one planet model appears not to be able to reproduce the dust Gaussian density profile predicted using the thermo-chemical modeling.
We present new Atacama Large Millimeter/sub-millimeter Array (ALMA) 1.3 mm continuum observations of the SR 24S transition disk with an angular resolution $lesssim0.18$ (12 au radius). We perform a multi-wavelength investigation by combining new data with previous ALMA data at 0.45 mm. The visibilities and images of the continuum emission at the two wavelengths are well characterized by a ring-like emission. Visibility modeling finds that the ring-like emission is narrower at longer wavelengths, in good agreement with models of dust trapping in pressure bumps, although there are complex residuals that suggest potentially asymmetric structures. The 0.45 mm emission has a shallower profile inside the central cavity than the 1.3 mm emission. In addition, we find that the $^{13}$CO and C$^{18}$O (J=2-1) emission peaks at the center of the continuum cavity. We do not detect either continuum or gas emission from the northern companion to this system (SR 24N), which is itself a binary system. The upper limit for the dust disk mass of SR 24N is $lesssim 0.12,M_{bigoplus}$, which gives a disk mass ratio in dust between the two components of $M_{mathrm{dust, SR,24S}}/M_{mathrm{dust, SR,24N}}gtrsim840$. The current ALMA observations may imply that either planets have already formed in the SR 24N disk or that dust growth to mm-sizes is inhibited there and that only warm gas, as seen by ro-vibrational CO emission inside the truncation radii of the binary, is present.
We present ALMA 1.3 mm (230 GHz) observations of the HD 32297 and HD 61005 debris disks, two of the most iconic debris disks due to their dramatic swept-back wings seen in scattered light images. These observations achieve sensitivities of 14 and 13 $mu$Jy beam$^{-1}$ for HD 32297 and HD 61005, respectively, and provide the highest resolution images of these two systems at millimeter wavelengths to date. By adopting a MCMC modeling approach, we determine that both disks are best described by a two-component model consisting of a broad ($Delta R/R> 0.4$) planetesimal belt with a rising surface density gradient, and a steeply falling outer halo aligned with the scattered light disk. The inner and outer edges of the planetesimal belt are located at $78.5pm8.1$ AU and $122pm3$ AU for HD 32297, and $41.9pm0.9$ AU and $67.0pm0.5$ AU for HD 61005. The halos extend to $440pm32$ AU and $188pm8$ AU, respectively. We also detect $^{12}$CO J$=2-1$ gas emission from HD 32297 co-located with the dust continuum. These new ALMA images provide observational evidence that larger, millimeter-sized grains may also populate the extended halos of these two disks previously thought to only be composed of small, micron-sized grains. We discuss the implications of these results for potential shaping and sculpting mechanisms of asymmetric debris disks.
We present Atacama Large Millimeter Array CO(3$-$2) and HCO$^+$(4$-$3) observations covering the central $1rlap{.}5$$times$$1rlap{.}5$ region of the Orion Nebula Cluster (ONC). The unprecedented level of sensitivity ($sim$0.1 mJy beam$^{-1}$) and ang ular resolution ($sim$$0rlap{.}09 approx 35$ AU) of these line observations enable us to search for gas-disk detections towards the known positions of submillimeter-detected dust disks in this region. We detect 23 disks in gas: 17 in CO(3$-$2), 17 in HCO$^+$(4$-$3), and 11 in both lines. Depending on where the sources are located in the ONC, we see the line detections in emission, in absorption against the warm background, or in both emission and absorption. We spectrally resolve the gas with $0.5$ km s$^{-1}$ channels, and find that the kinematics of most sources are consistent with Keplerian rotation. We measure the distribution of gas-disk sizes and find typical radii of $sim$50-200 AU. As such, gas disks in the ONC are compact in comparison with the gas disks seen in low-density star-forming regions. Gas sizes are universally larger than the dust sizes. However, the gas and dust sizes are not strongly correlated. We find a positive correlation between gas size and distance from the massive star $theta^1$ Ori C, indicating that disks in the ONC are influenced by photoionization. Finally, we use the observed kinematics of the detected gas lines to model Keplerian rotation and infer the masses of the central pre-main-sequence stars. Our dynamically-derived stellar masses are not consistent with the spectroscopically-derived masses, and we discuss possible reasons for this discrepancy.
We present ALMA observations of the $^{12}$CO, $^{13}$CO, C$^{18}$O J=2-1 transitions and the 1.3,mm continuum emission for the circumbinary disc around HD 142527, at an angular resolution of $approx$,0farcs3. We observe multiple spiral structures in intensity, velocity and velocity dispersion for the $^{12}$CO and $^{13}$CO gas tracers. A newly detected $^{12}$CO spiral originates from the dust horseshoe, and is rotating at super-Keplerian velocity or vertically ascending, whilst the inter-spiral gas is rotating at sub-Keplerian velocities. This new spiral possibly connects to a previously identified spiral, thus spanning > 360$^circ$. A spatial offset of ~30 au is observed between the $^{12}$CO and $^{13}$CO spirals, to which we hypothesize that the gas layers are propagating at different speeds (``surfing) due to a non-zero vertical temperature gradient. Leveraging the varying optical depths between the CO isotopologues, we reconstruct temperature and column density maps of the outer disc. Gas surface density peaks at r,$approx$,180,au, coincident with the peak of continuum emission. Here the dust grains have a Stokes number of $approx$,1, confirming radial and azimuthal trapping in the horseshoe. We measure a cavity radius at half-maximum surface density of $approx$,100,au, and a cavity eccentricity between 0.3 and 0.45.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا