ﻻ يوجد ملخص باللغة العربية
Measurements of the gas mass are necessary to determine the planet formation potential of protoplanetary disks. Observations of rare CO isotopologues are typically used to determine disk gas masses; however, if the line emission is optically thick this will result in an underestimated disk mass. With ALMA we have detected the rarest stable CO isotopologue, 13C17O, in a protoplanetary disk for the first time. We compare our observations with the existing detections of 12CO, 13CO, C18O and C17O in the HD163296 disk. Radiative transfer modelling using a previously benchmarked model, and assuming interstellar isotopic abundances, significantly underestimates the integrated intensity of the 13C17O J=3-2 line. Reconciliation between the observations and the model requires a global increase in CO gas mass by a factor of 3.5. This is a factor of 2-6 larger than previous gas mass estimates using C18O. We find that C18O emission is optically thick within the CO snow line, while the 13C17O emission is optically thin and is thus a robust tracer of the bulk disk CO gas mass.
The first detection of gas-phase methanol in a protoplanetary disk (TW Hya) is presented. In addition to being one of the largest molecules detected in disks to date, methanol is also the first disk organic molecule with an unambiguous ice chemistry
While it is generally accepted that the magnetic field and its non-ideal effects play important roles during the stellar formation, simple models of pure hydrodynamics and angular momentum conservation are still widely employed in the studies of disk
The formation of asteroids, comets and planets occurs in the interior of protoplanetary disks during the early phase of star formation. Consequently, the chemical composition of the disk might shape the properties of the emerging planetary system. In
The protoplanetary disk around the T Tauri star GM Aur was one of the first hypothesized to be in the midst of being cleared out by a forming planet. As a result, GM Aur has had an outsized influence on our understanding of disk structure and evoluti
Meteorites contain relict decay products of short-lived radionuclides that were present in the protoplanetary disk when asteroids and planets formed. Several studies reported a high abundance of 60Fe (t1/2=2.62+/-0.04 Myr) in chondrites (60Fe/56Fe~6*