ﻻ يوجد ملخص باللغة العربية
The effect of quenched (frozen) orientational disorder on the collective motion of active particles is analyzed. We find that, as with annealed disorder (Langevin noise), active polar systems are far more robust against quenched disorder than their equilibrium counterparts. In particular, long ranged order (i.e., the existence of a non-zero average velocity $langle {bf v} rangle$) persists in the presence of quenched disorder even in spatial dimensions $d=3$, while it is destroyed even by arbitrarily weak disorder in $d le 4$ in equilibrium systems. Furthermore, in $d=2$, quasi-long-ranged order (i.e., spatial velocity correlations that decay as a power law with distance) occurs when quenched disorder is present, in contrast to the short-ranged order that is all that can survive in equilibrium. These predictions are borne out by simulations in both two and three dimensions.
We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of pro
The effect of quenched (frozen) disorder on the collective motion of active particles is analyzed. We find that active polar systems are far more robust against quenched disorder than equilibrium ferromagnets. Long ranged order (a non-zero average ve
We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a 2d lattice, active particles undergo a diffusion biased in one of two possible directions (
We consider the isotropic-to-nematic transition in liquid crystals confined to aerogel hosts, and assume that the aerogel acts as a random field. We generally find that self-averaging is violated. For a bulk transition that is weakly first-order, the
The spontaneous emergence of collective motion patterns is usually associated with the presence of a velocity alignment mechanism that mediates the interactions among the moving individuals. Despite of this widespread view, it has been shown recently