ﻻ يوجد ملخص باللغة العربية
Electron evaporation plays an important role in the electron temperature evolution and thus expansion rate in low-density ultracold plasmas. In addition, evaporation is useful as a potential tool for obtaining colder electron temperatures and characterizing plasma parameters. Evaporation theory has been developed for atomic gases and has been applied to a one-component plasma system. We numerically investigate whether such an adapted theory is applicable to ultracold neutral plasmas. We find that it is not due to the violation of fundamental assumptions of the model. The details of our calculations are presented as well as a discussion of the implications for a simple description of the electron evaporation rate in ultracold plasmas.
We develop a projection imaging technique to study ultracold plasma dynamics. We image the charged particle spatial distributions by extraction with a high-voltage pulse onto a position-sensitive detector. Measuring the 2D width of the ion image at l
In this work, we analyze the creation of the discharge asymmetry and the concomitant formation of the DC self-bias voltage in capacitively coupled radio frequency plasmas driven by multi-frequency waveforms, as a function of the electrode surface cha
We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbatio
We investigate the strongly correlated ion dynamics and the degree of coupling achievable in the evolution of freely expanding ultracold neutral plasmas. We demonstrate that the ionic Coulomb coupling parameter $Gamma_{rm i}$ increases considerably i
We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolu