ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation of Charged Particle Evaporation Expressions in Ultracold Plasmas

115   0   0.0 ( 0 )
 نشر من قبل Craig Witte Mr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron evaporation plays an important role in the electron temperature evolution and thus expansion rate in low-density ultracold plasmas. In addition, evaporation is useful as a potential tool for obtaining colder electron temperatures and characterizing plasma parameters. Evaporation theory has been developed for atomic gases and has been applied to a one-component plasma system. We numerically investigate whether such an adapted theory is applicable to ultracold neutral plasmas. We find that it is not due to the violation of fundamental assumptions of the model. The details of our calculations are presented as well as a discussion of the implications for a simple description of the electron evaporation rate in ultracold plasmas.



قيم البحث

اقرأ أيضاً

249 - X. L. Zhang , R. S. Fletcher , 2008
We develop a projection imaging technique to study ultracold plasma dynamics. We image the charged particle spatial distributions by extraction with a high-voltage pulse onto a position-sensitive detector. Measuring the 2D width of the ion image at l ater times (the ion image size in the first 20 $mu$s is dominated by the Coulomb explosion of the dense ion cloud), we extract the plasma expansion velocity. These velocities at different initial electron temperatures match earlier results obtained by measuring the plasma oscillation frequency. The electron image size slowly decreases during the plasma lifetime because of the strong Coulomb force of the ion cloud on the electrons, electron loss and Coulomb explosion effects.
In this work, we analyze the creation of the discharge asymmetry and the concomitant formation of the DC self-bias voltage in capacitively coupled radio frequency plasmas driven by multi-frequency waveforms, as a function of the electrode surface cha racteristics. For this latter, we consider and vary the coefficients that characterize the elastic reflection of the electrons from the surfaces and the ion-induced secondary electron yield. Our investigations are based on Particle-in-Cell/Monte Carlo Collision simulations of the plasma and on a model that aids the understanding of the computational results. Electron reflection from the electrodes is found to affect slightly the discharge asymmetry in the presence of multi-frequency excitation, whereas secondary electrons cause distinct changes to the asymmetry of the plasma as a function of the phase angle between the harmonics of the driving voltage waveform and as a function the number of these harmonics.
127 - J. Castro , P. McQuillen , 2010
We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbatio ns oscillate in space and time, and the dispersion relation of the oscillations matches that of ion acoustic waves, which are long-wavelength, electrostatic, density waves.
91 - T. Pohl , T. Pattard , J.M. Rost 2005
We investigate the strongly correlated ion dynamics and the degree of coupling achievable in the evolution of freely expanding ultracold neutral plasmas. We demonstrate that the ionic Coulomb coupling parameter $Gamma_{rm i}$ increases considerably i n later stages of the expansion, reaching the strongly coupled regime despite the well-known initial drop of $Gamma_{rm i}$ to order unity due to disorder-induced heating. Furthermore, we formulate a suitable measure of correlation and show th at $Gamma_{rm i}$ calculated from the ionic temperature and density reflects the degree of order in the system if it is sufficiently close to a quasisteady state. At later times, however, the expansion of the plasma cloud becomes faster than the relaxation of correlations, and the system does not reach thermodynamic equilibrium anymore.
83 - T. Pohl , T. Pattard 2005
We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolu tion of the plasma including the effect of the strongly coupled ion motion. The plasma shows a rather complex relaxation behavior, connected with temporal as well as spatial oscillations of the ion temperature. Furthermore, additional laser cooling of the ions during the plasma evolution drastically modifies the expansion dynamics, so that crystallization of the ion component can occur in this nonequilibrium system, leading to lattice-like structures or even long-range order resulting in concentric shells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا