ﻻ يوجد ملخص باللغة العربية
We investigate the strongly correlated ion dynamics and the degree of coupling achievable in the evolution of freely expanding ultracold neutral plasmas. We demonstrate that the ionic Coulomb coupling parameter $Gamma_{rm i}$ increases considerably in later stages of the expansion, reaching the strongly coupled regime despite the well-known initial drop of $Gamma_{rm i}$ to order unity due to disorder-induced heating. Furthermore, we formulate a suitable measure of correlation and show th at $Gamma_{rm i}$ calculated from the ionic temperature and density reflects the degree of order in the system if it is sufficiently close to a quasisteady state. At later times, however, the expansion of the plasma cloud becomes faster than the relaxation of correlations, and the system does not reach thermodynamic equilibrium anymore.
We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolu
We present long-time simulations of expanding ultracold neutral plasmas, including a full treatment of the strongly coupled ion dynamics. Thereby, the relaxation dynamics of the expanding laser-cooled plasma is studied, taking into account elastic as
We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbatio
We have used the free expansion of ultracold neutral plasmas as a time-resolved probe of electron temperature. A combination of experimental measurements of the ion expansion velocity and numerical simulations characterize the crossover from an elast
While ion heating by elastic electron-ion collisions may be neglected for a description of the evolution of freely expanding ultracold neutral plasmas, the situation is different in scenarios where the ions are laser-cooled during the system evolutio