ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise LIGO Lensing Rate Predictions for Binary Black Holes

68   0   0.0 ( 0 )
 نشر من قبل Wang Kei Wong
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how LIGO is expected to detect coalescing binary black holes at $z>1$, that are lensed by the intervening galaxy population. Gravitational magnification, $mu$, strengthens gravitational wave signals by $sqrt{mu}$, without altering their frequencies, which if unrecognised leads to an underestimate of the event redshift and hence an overestimate of the binary mass. High magnifications can be reached for coalescing binaries because the region of intense gravitational wave emission during coalescence is so small ($sim$100km), permitting very close projections between lensing caustics and gravitational-wave events. Our simulations incorporate accurate waveforms convolved with the LIGO power spectral density. Importantly, we include the detection dependence on sky position and orbital orientation, which for the LIGO configuration translates into a wide spread in observed redshifts and chirp masses. Currently we estimate a detectable rate of lensed events rateEarly{}, that rises to rateDesign{}, at LIGOs design sensitivity limit, depending on the high redshift rate of black hole coalescence.

قيم البحث

اقرأ أيضاً

Gravitational waves (GWs) are subject to gravitational lensing in the same way as electromagnetic radiation. However, to date, no unequivocal observation of a lensed GW transient has been reported. Independently, GW observatories continue to search f or the stochastic GW signal which is produced by many transient events at high redshift. We exploit a surprising connection between the lensing of individual transients and limits to the background radiation produced by the unresolved population of binary back hole mergers: we show that it constrains the fraction of individually resolvable lensed binary black holes to less than $sim 4times 10^{-5}$ at present sensitivity. We clarify the interpretation of existing, low redshift GW observations (obtained assuming no lensing) in terms of their apparent lensed redshifts and masses and explore constraints from GW observatories at future sensitivity. Based on our results, recent claims of observations of lensed events are statistically disfavoured.
The LIGO and Virgo Interferometers have so far provided 11 gravitational-wave (GW) observations of black-hole binaries. Similar detections are bound to become very frequent in the near future. With the current and upcoming wealth of data, it is possi ble to confront specific formation models with observations. We investigate here whether current data are compatible with the hypothesis that LIGO/Virgo black holes are of primordial origin. We compute in detail the mass and spin distributions of primordial black holes (PBHs), their merger rates, the stochastic background of unresolved coalescences, and confront them with current data from the first two observational runs, also including the recently discovered GW190412. We compute the best-fit values for the parameters of the PBH mass distribution at formation that are compatible with current GW data. In all cases, the maximum fraction of PBHs in dark matter is constrained by these observations to be $f_{text{PBH}}approx {rm few}times 10^{-3}$. We discuss the predictions of the PBH scenario that can be directly tested as new data become available. In the most likely formation scenarios where PBHs are born with negligible spin, the fact that at least one of the components of GW190412 is moderately spinning is incompatible with a primordial origin for this event, unless accretion or hierarchical mergers are significant. In the absence of accretion, current non-GW constraints already exclude that LIGO/Virgo events are all of primordial origin, whereas in the presence of accretion the GW bounds on the PBH abundance are the most stringent ones in the relevant mass range. A strong phase of accretion during the cosmic history would favour mass ratios close to unity, and a redshift-dependent correlation between high masses, high spins and nearly-equal mass binaries, with the secondary component spinning faster than the primary.
We derive the first constraints on the time delay distribution of binary black hole (BBH) mergers using the LIGO-Virgo Gravitational-Wave Transient Catalog GWTC-2. Assuming that the progenitor formation rate follows the star formation rate (SFR), the data favor that $43$--$100%$ of mergers have delay times $<4.5$ Gyr (90% credibility). Adopting a model for the metallicity evolution, we derive joint constraints for the metallicity-dependence of the BBH formation efficiency and the distribution of time delays between formation and merger. Short time delays are favored regardless of the assumed metallicity dependence, although the preference for short delays weakens as we consider stricter low-metallicity thresholds for BBH formation. For a $p(tau) propto tau^{-1}$ time delay distribution and a progenitor formation rate that follows the SFR without metallicity dependence, we find that $tau_mathrm{min}<2.2$ Gyr, whereas considering only the low-metallicity $Z < 0.3,Z_odot$ SFR, $tau_mathrm{min} < 3.0$ Gyr (90% credibility). Alternatively, if we assume long time delays, the progenitor formation rate must peak at higher redshifts than the SFR. For example, for a $p(tau) propto tau^{-1}$ time delay distribution with $tau_mathrm{min} = 4$ Gyr, the inferred progenitor rate peaks at $z > 3.9$ (90% credibility). Finally, we explore whether the inferred formation rate and time delay distribution vary with BBH mass.
A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on September 14, 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 d around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false alarm rate (FAR) of $< 4.9 times 10^{-6} , mathrm{yr}^{-1}$, yielding a $p$-value for GW150914 of $< 2 times 10^{-7}$. Parameter estimation followup on this trigger identifies its source as a binary black hole (BBH) merger with component masses $(m_1, m_2) = left(36^{+5}_{-4},29^{+4}_{-4}right) , M_odot$ at redshift $z = 0.09^{+0.03}_{-0.04}$ (median and 90% credible range). Here we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the Universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between $2$--$53 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from $13$--$600 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range $2$--$600 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$.
We propose a new scenario for the evolution of a binary of primordial black holes (PBHs). We consider a dynamical friction by ambient dark matter, scattering of dark matter particles with a highly eccentric orbit besides the standard two-body relaxat ion process to refill the loss cone, and interaction between the binary and a circumbinary disk, assuming that PBHs do not constitute the bulk of dark matter. Binary PBHs lose the energy and angular momentum by these processes, which could be sufficiently efficient for a typical configuration. Such a binary coalesces due to the gravitational wave emission in a time scale much shorter than the age of the universe. We estimate the density parameter of the resultant gravitational wave background. Astrophysical implication concerning the formation of intermediate-mass to supermassive black holes is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا