ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Beamforming and Computation Offloading for Multi-user Mobile-Edge Computing

96   0   0.0 ( 0 )
 نشر من قبل Changfeng Ding
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Mobile edge computing (MEC) is considered as an efficient method to relieve the computation burden of mobile devices. In order to reduce the energy consumption and time delay of mobile devices (MDs) in MEC, multiple users multiple input and multiple output (MU-MIMO) communications is considered to be applied to the MEC system. The purpose of this paper is to minimize the weighted sum of energy consumption and time delay of MDs by jointly considering the offloading decision and MU-MIMO beamforming problems. And the resulting optimization problem is a mixed-integer non-linear programming problem, which is NP-hard. To solve the optimization problem, a semidefinite relaxation based algorithm is proposed to solve the offloading decision problem. Then, the MU-MIMO beamforming design problem is handled with a newly proposed fractional programming method. Simulation results show that the proposed algorithms can effectively reduce the energy consumption and time delay of the computation offloading.



قيم البحث

اقرأ أيضاً

Mobile edge computing (MEC) has recently emerged as a promising technology to release the tension between computation-intensive applications and resource-limited mobile terminals (MTs). In this paper, we study the delay-optimal computation offloading in computation-constrained MEC systems. We consider the computation task queue at the MEC server due to its constrained computation capability. In this case, the task queue at the MT and that at the MEC server are strongly coupled in a cascade manner, which creates complex interdependencies and brings new technical challenges. We model the computation offloading problem as an infinite horizon average cost Markov decision process (MDP), and approximate it to a virtual continuous time system (VCTS) with reflections. Different to most of the existing works, we develop the dynamic instantaneous rate estimation for deriving the closed-form approximate priority functions in different scenarios. Based on the approximate priority functions, we propose a closed-form multi-level water-filling computation offloading solution to characterize the influence of not only the local queue state information (LQSI) but also the remote queue state information (RQSI). A extension is provided from single MT single MEC server scenarios to multiple MTs multiple MEC servers scenarios and several insights are derived. Finally, the simulation results show that the proposed scheme outperforms the conventional schemes.
Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we cons ider a point-to-point MEC system, where the device harvests energy from the access points (APs) transmitted signal to power the offloading and/or the local computation of a task. By taking into account the non-linearities of energy harvesting, we provide analytical expressions for the probability of successful computation and for the average number of successfully computed bits. Our results show that a hybrid scheme of partial offloading and local computation is not always efficient. In particular, the decision to offload and/or compute locally, depends on the systems parameters such as the distance to the AP and the number of bits that need to be computed.
86 - Yuyi Mao , Jun Zhang , S.H. Song 2017
Mobile-edge computing (MEC) has recently emerged as a prominent technology to liberate mobile devices from computationally intensive workloads, by offloading them to the proximate MEC server. To make offloading effective, the radio and computational resources need to be dynamically managed, to cope with the time-varying computation demands and wireless fading channels. In this paper, we develop an online joint radio and computational resource management algorithm for multi-user MEC systems, with the objective as minimizing the long-term average weighted sum power consumption of the mobile devices and the MEC server, subject to a task buffer stability constraint. Specifically, at each time slot, the optimal CPU-cycle frequencies of the mobile devices are obtained in closed forms, and the optimal transmit power and bandwidth allocation for computation offloading are determined with the Gauss-Seidel method; while for the MEC server, both the optimal frequencies of the CPU cores and the optimal MEC server scheduling decision are derived in closed forms. Besides, a delay-improved mechanism is proposed to reduce the execution delay. Rigorous performance analysis is conducted for the proposed algorithm and its delay-improved version, indicating that the weighted sum power consumption and execution delay obey an $left[Oleft(1slash Vright),Oleft(Vright)right]$ tradeoff with $V$ as a control parameter. Simulation results are provided to validate the theoretical analysis and demonstrate the impacts of various parameters.
In this article, we consider the problem of relay assisted computation offloading (RACO), in which user A aims to share the results of computational tasks with another user B through wireless exchange over a relay platform equipped with mobile edge c omputing capabilities, referred to as a mobile edge relay server (MERS). To support the computation offloading, we propose a hybrid relaying (HR) approach employing two orthogonal frequency bands, where the amplify-and-forward scheme is used in one band to exchange computational results, while the decode-and-forward scheme is used in the other band to transfer the unprocessed tasks. The motivation behind the proposed HR scheme for RACO is to adapt the allocation of computing and communication resources both to dynamic user requirements and to diverse computational tasks. Within this framework, we seek to minimize the weighted sum of the execution delay and the energy consumption in the RACO system by jointly optimizing the computation offloading ratio, the bandwidth allocation, the processor speeds, as well as the transmit power levels of both user $A$ and the MERS, under practical constraints on the available computing and communication resources. The resultant problem is formulated as a non-differentiable and nonconvex optimization program with highly coupled constraints. By adopting a series of transformations and introducing auxiliary variables, we first convert this problem into a more tractable yet equivalent form. We then develop an efficient iterative algorithm for its solution based on the concave-convex procedure. By exploiting the special structure of this problem, we also propose a simplified algorithm based on the inexact block coordinate descent method, with reduced computational complexity. Finally, we present numerical results that illustrate the advantages of the proposed algorithms over state-of-the-art benchmark schemes.
Mobile-edge computing (MEC) has emerged as a prominent technique to provide mobile services with high computation requirement, by migrating the computation-intensive tasks from the mobile devices to the nearby MEC servers. To reduce the execution lat ency and device energy consumption, in this paper, we jointly optimize task offloading scheduling and transmit power allocation for MEC systems with multiple independent tasks. A low-complexity sub-optimal algorithm is proposed to minimize the weighted sum of the execution delay and device energy consumption based on alternating minimization. Specifically, given the transmit power allocation, the optimal task offloading scheduling, i.e., to determine the order of offloading, is obtained with the help of flow shop scheduling theory. Besides, the optimal transmit power allocation with a given task offloading scheduling decision will be determined using convex optimization techniques. Simulation results show that task offloading scheduling is more critical when the available radio and computational resources in MEC systems are relatively balanced. In addition, it is shown that the proposed algorithm achieves near-optimal execution delay along with a substantial device energy saving.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا