ﻻ يوجد ملخص باللغة العربية
The onset or demise of Kondo effect in a magnetic impurity on a metal surface can be triggered, as often observed, by the simple mechanical nudging of a tip. This mechanically-driven quantum phase transition must reflect in a corresponding mechanical dissipation peak; yet, this kind of effect has not been focused upon so far. Aiming at the simplest theoretical modeling, we initially treat the impurity as a non-interacting resonant level turned cyclically on and off, and obtain a dissipation per cycle which is proportional to the hybridization $Gamma$, with a characteristic temperature dependent resonant peak value. A better treatment is obtained next by solving an Anderson impurity model by numerical renormalization group. Here, many body effects yield a dissipation whose peak value is now proportional to $T_K |log T|$ so long as $Tsim T_K$, followed for $Tsim Gamma$ by a second high temperature regime where dissipation is proportional to $Gamma|log T|$. The detectability of Kondo mechanical dissipation in atomic force microscopy is discussed.
Using both a resonant level model and the time-dependent Gutzwiller approximation, we study the power dissipation of a localized impurity hybridized with a conduction band when the hybridization is periodically switched on and off. The total dissipat
Bodies in relative motion separated by a gap of a few nanometers can experience a tiny friction force. This non-contact dissipation can have various origins and can be successfully measured by a sensitive pendulum atomic force microscope tip oscillat
Proximity of two different materials leads to an intricate coupling of quasiparticles so that an unprecedented electronic state is often realized at the interface. Here, we demonstrate a resonance-type many-body ground state in graphene, a non-magnet
CeRhIn$_{5}$ is a Kondo-lattice prototype in which a magnetic field B$bf{^{ast}simeq}$ 30 T induces an abrupt Fermi-surface (FS) reconstruction and pronounced in-plane electrical transport anisotropy all within its antiferromagnetic state. Though the
We investigate the many-body effects of a magnetic adatom in ferromagnetic graphene by using the numerical renormalization group method. The nontrivial band dispersion of ferromagnetic graphene gives rise to interesting Kondo physics different from t