ﻻ يوجد ملخص باللغة العربية
Using both a resonant level model and the time-dependent Gutzwiller approximation, we study the power dissipation of a localized impurity hybridized with a conduction band when the hybridization is periodically switched on and off. The total dissipated energy is proportional to the Kondo temperature, with a non-trivial frequency dependence. At low frequencies it can be well approximated by the one of a single quench, and is obtainable analitically; at intermediate frequencies it undergoes oscillations; at high frequencies, after reaching its maximum, it quickly drops to zero. This frequency-dependent energy dissipation could be relevant to systems such as irradiated quantum dots, where Kondo can be switched at very high frequencies.
The onset or demise of Kondo effect in a magnetic impurity on a metal surface can be triggered, as often observed, by the simple mechanical nudging of a tip. This mechanically-driven quantum phase transition must reflect in a corresponding mechanical
We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model that is known to host a $mathbb{
Strong-coupling expansions, to order $(t/J)^8$, are derived for the Kondo lattice model of strongly correlated electrons, in 1-, 2- and 3- dimensions at arbitrary temperature. Results are presented for the specific heat, and spin and charge susceptibilities.
Anomalous metallic properties are often observed in the proximity of quantum critical points (QCPs), with violation of the Fermi Liquid paradigm. We propose a scenario where, due to the presence of a nearby QCP, dynamical fluctuations of the order pa
We report the anisotropic changes in the electronic structure of a Kondo semiconductor CeOs$_2$Al$_{10}$ across an anomalous antiferromagnetic ordering temperature ($T_0$) of 29 K, using optical conductivity spectra. The spectra along the $a$- and $c