ﻻ يوجد ملخص باللغة العربية
We use first-principles Quantum Monte-Carlo simulations to study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between hydrogen adatoms attached to a graphene sheet. We find that the pairwise RKKY interactions at distances of a few lattice spacings are strongly affected by inter-electron interactions, in particular, the potential barrier between widely separated adatoms and the dimer configuration becomes wider and thus harder to penetrate. We also point out that anti-ferrromagnetic and charge density wave orderings have very different effects on the RKKY interaction. Finally, we analyze the stability of several regular adatom superlattices with respect to small displacements of a single adatom, distinguishing the cases of adatoms which populate either both or only one sublattice of the graphene lattice.
The cooperative behavior of quantum impurities on 2D materials, such as graphene and bilayer graphene, is characterized by a non-trivial competition between screening (Kondo effect), and Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetism. In addition, du
Motivated by recent experiments on ABC-stacked rhombohedral trilayer graphene (RTG) which observed spin-valley symmetry-breaking and superconductivity, we study instabilities of the RTG metallic state to symmetry breaking orders. We find that interac
Electron-electron interactions are intrinsically long ranged, but many models of strongly interacting electrons only take short-ranged interactions into account. Here, we present results of atomistic calculations including both long-ranged and short-
We study RKKY interactions for magnetic impurities on graphene in situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered: non-uniformly strained graphene, and graphene in a real magnetic field. RK
In the vicinity of the magic angle in twisted bilayer graphene (TBG), the two low-energy van Hove singularities (VHSs) become exceedingly narrow1-10 and many exotic correlated states, such as superconductivity, ferromagnetism, and topological phases,