ﻻ يوجد ملخص باللغة العربية
Recently, a test for a sign-changing gap function in a candidate multiband unconventional superconductor involving quasiparticle interference data was proposed. The test was based on the antisymmetric, Fourier transformed conductance maps integrated over a range of momenta $bf q$ corresponding to interband processes, which was argued to display a particular resonant form, provided the gaps changed sign between the Fermi surface sheets connected by $bf q$. The calculation was performed for a single impurity, however, raising the question of how robust this measure is as a test of sign-changing pairing in a realistic system with many impurities. Here we reproduce the results of the previous work within a model with two distinct Fermi surface sheets, and show explicitly that the previous result, while exact for a single nonmagnetic scatterer and also in the limit of a dense set of random impurities, can be difficult to implement for a few dilute impurities. In this case, however, appropriate isolation of a single impurity is sufficient to recover the expected result, allowing a robust statement about the gap signs to be made.
Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission (ARPES) data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle interference (QPI) to identify gap sign
Phase-sensitive measurements of the superconducting gap in Fe-based superconductors have proven more difficult than originally anticipated. While quasiparticle interference (QPI) measurements based on scanning tunneling spectroscopy are often propose
A single impurity problem is investigated for multiband s-wave superconductors with different sign order parameters (+-s-wave superconductors) suggested in Fe-pnictide superconductors. Not only intraband but also interband scattering is considered at
The quasiparticle excitation is one of the most fundamental and ubiquitous physical observables in cuprate superconductors, carrying information about the bosonic glue forming electron pairs. Here the autocorrelation of the quasiparticle excitation s
We investigate the role of gap characteristics such as anisotropy and inequality of the gaps in the quasiparticle interferences of iron pnictides using a five-orbital tight-binding model. We examine how the difference in the sensitivities exhibited b