ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting sign-changing superconducting gap in LiFeAs using quasiparticle interference

153   0   0.0 ( 0 )
 نشر من قبل Ilya Eremin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission (ARPES) data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle interference (QPI) to identify gap sign changes in a qualitative way, following our original proposal [Phys. Rev. B 92, 184513 (2015)]. We show that all features present for the simple two-band model for the sign-changing $s_{+-}$-wave superconducting gap employed previously are still present in the realistic tight-binding approximation and gap values observed experimentally. We discuss various superconducting gap structures proposed for LiFeAs, and identify various features of these superconducting gaps functions in the quasiparticle interference patterns. On the other hand, we show that it will be difficult to identify the more complicated possible sign structures of the hole pocket gaps in LiFeAs, due to the smallness of the pockets and the near proximity of two of the gap energies.



قيم البحث

اقرأ أيضاً

Phase-sensitive measurements of the superconducting gap in Fe-based superconductors have proven more difficult than originally anticipated. While quasiparticle interference (QPI) measurements based on scanning tunneling spectroscopy are often propose d as defnitive tests of gap structure, the analysis typically relies on details of the model employed. Here we point out that the temperature dependence of momentum-integrated QPI data can be used to identify gap sign changes in a qualitative way, and present an illustration for $s_{pm}$ and $s_{++}$ states in a system with typical Fe-pnictide Fermi surface.
344 - Shun Chi , S. Johnston , G. Levy 2013
Quasiparticle interference (QPI) by means of scanning tunneling microscopy/spectroscopy (STM/STS), angle resolved photoemission spectroscopy (ARPES), and multi-orbital tight bind- ing calculations are used to investigate the band structure and superc onducting order parameter of LiFeAs. Using this combination we identify intra- and interband scattering vectors between the hole (h) and electron (e) bands in the QPI maps. Discrepancies in the band dispersions inferred from previous ARPES and STM/STS are reconciled by recognizing a difference in the $k_z$ sensitivity for the two probes. The observation of both h-h and e-h scattering is exploited using phase-sensitive scattering selection rules for Bogoliubov quasiparticles. From this we infer an s$_pm$ gap structure, where a sign change occurs in the superconducting order parameter between the e and h bands.
Several angle resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within hole-like bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the hole-like bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.
Recently, a test for a sign-changing gap function in a candidate multiband unconventional superconductor involving quasiparticle interference data was proposed. The test was based on the antisymmetric, Fourier transformed conductance maps integrated over a range of momenta $bf q$ corresponding to interband processes, which was argued to display a particular resonant form, provided the gaps changed sign between the Fermi surface sheets connected by $bf q$. The calculation was performed for a single impurity, however, raising the question of how robust this measure is as a test of sign-changing pairing in a realistic system with many impurities. Here we reproduce the results of the previous work within a model with two distinct Fermi surface sheets, and show explicitly that the previous result, while exact for a single nonmagnetic scatterer and also in the limit of a dense set of random impurities, can be difficult to implement for a few dilute impurities. In this case, however, appropriate isolation of a single impurity is sufficient to recover the expected result, allowing a robust statement about the gap signs to be made.
100 - A. F. Fang , R. Zhou , H. Tukada 2021
Identifying the uniqueness of FeP-based superconductors may shed new lights on the mechanism of superconductivity in iron-pnictides. Here, we report nuclear magnetic resonance(NMR) studies on LiFeP and LiFeAs which have the same crystal structure but different pnictogen atoms. The NMR spectrum is sensitive to inhomogeneous magnetic fields in the vortex state and can provide the information on the superconducting pairing symmetry through the temperature dependence of London penetration depth $lambda_L$. We find that $lambda_L$ saturates below $T sim 0.2$ $T_c$ in LiFeAs, where $T_c$ is the superconducting transition temperature, indicating nodeless superconducting gaps. Furthermore, by using a two-gaps model, we simulate the temperature dependence of $lambda_L$ and obtain the superconducting gaps of LiFeAs, as $Delta_1 = 1.2$ $k_B T_c$ and $Delta_2 = 2.8$ $k_B T_c$, in agreement with previous result from spin-lattice relaxation. For LiFeP, in contrast, the London penetration depth $lambda_L$ does not show any saturation down to $T sim 0.03 $ $T_c$, indicating nodes in the superconducting energy gap function. Finally, we demonstrate that the strong spin fluctuations with diffusive characteristics exist in LiFeP, as in some cuprate high temperature superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا