ﻻ يوجد ملخص باللغة العربية
We investigate the role of gap characteristics such as anisotropy and inequality of the gaps in the quasiparticle interferences of iron pnictides using a five-orbital tight-binding model. We examine how the difference in the sensitivities exhibited by the sign-changing and -preserving $s$-wave superconductivity in an annular region around ($pi, 0$), which can be used to determine the sign change of the superconducting gap, gets affected when the gaps are unequal on the electron and hole pocket. In addition, we also discuss how robust these differentiating features are on changing the quasiparticle energy or when the gap is anisotropic.
Using both two orbital and five orbital models, we investigate the quasiparticle interference (QPI) patterns in the superconducting (SC) state of iron-based superconductors. We compare the results for nonmagnetic and magnetic impurities in sign-chang
If strong electron-electron interactions between neighboring Fe atoms mediate the Cooper pairing in iron-pnictide superconductors, then specific and distinct anisotropic superconducting energy gaps Delta_i(k) should appear on the different electronic
We use scanning tunneling microscopy to investigate the doping dependence of quasiparticle interference (QPI) in NaFe1-xCoxAs iron-based superconductors. The goal is to study the relation between nematic fluctuations and Cooper pairing. In the parent
We investigate the impurity scattering induced quasiparticle interference in the ($pi, 0$) spin-density wave phase of the iron pnictides. We use a five orbital tight binding model and our mean field theory in the clean limit captures key features of
We have performed high-resolution angle-resolved photoemission spectroscopy on Fe-based superconductor LiFeAs (Tc = 18 K). We reveal multiple nodeless superconducting (SC) gaps with 2D/kBTc ratios varying from 2.8 to 6.4, depending on the Fermi surfa