ﻻ يوجد ملخص باللغة العربية
Higher-order recursion schemes (HORS) have received much attention as a useful abstraction of higher-order functional programs with a number of new verification techniques employing HORS model-checking as their centrepiece. We give an account of the C-SHORe tool, which contributed to the ongoing quest for a truly scalable model-checker for HORS by offering a different, automata theoretic perspective. C-SHORe implements the first practical model-checking algorithm that acts on a generalisation of pushdown automata equi-expressive with HORS called collapsible pushdown systems (CPDS). At its core is a backwards saturation algorithm for CPDS. Additionally, it is able to use information gathered from an approximate forward reachability analysis to guide its backward search. Moreover, it uses an algorithm that prunes the CPDS prior to model-checking and a method for extracting counter-examples in negative instances. We provide an up-to-date comparison of C-SHORe with the state-of-the-art verification tools for HORS. The tool and additional material are available from http://cshore.cs.rhul.ac.uk.
This paper studies the logical properties of a very general class of infinite ranked trees, namely those generated by higher-order recursion schemes. We consider, for both monadic second-order logic and modal mu-calculus, three main problems: model-c
This paper studies a large class of two-player perfect-information turn-based parity games on infinite graphs, namely those generated by collapsible pushdown automata. The main motivation for studying these games comes from the connections from colla
We present a survey of the saturation method for model-checking pushdown systems.
Classical Processes (CP) is a calculus where the proof theory of classical linear logic types communicating processes with mobile channels, a la pi-calculus. Its construction builds on a recent propositions as types correspondence between session typ
The biologically inspired framework of port-graphs has been successfully used to specify complex systems. It is the basis of the PORGY modelling tool. To facilitate the specification of proof normalisation procedures via graph rewriting, in this pape