ترغب بنشر مسار تعليمي؟ اضغط هنا

Refined BPS invariants of 6d SCFTs from anomalies and modularity

105   0   0.0 ( 0 )
 نشر من قبل Amir-Kian Kashani-Poor
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

F-theory compactifications on appropriate local elliptic Calabi-Yau manifolds engineer six dimensional superconformal field theories and their mass deformations. The partition function $Z_{top}$ of the refined topological string on these geometries captures the particle BPS spectrum of this class of theories compactified on a circle. Organizing $Z_{top}$ in terms of contributions $Z_beta$ at base degree $beta$ of the elliptic fibration, we find that these, up to a multiplier system, are meromorphic Jacobi forms of weight zero with modular parameter the Kaehler class of the elliptic fiber and elliptic parameters the couplings and mass parameters. The indices with regard to the multiple elliptic parameters are fixed by the refined holomorphic anomaly equations, which we show to be completely determined from knowledge of the chiral anomaly of the corresponding SCFT. We express $Z_beta$ as a quotient of weak Jacobi forms, with a universal denominator inspired by its pole structure as suggested by the form of $Z_{top}$ in terms of 5d BPS numbers. The numerator is determined by modularity up to a finite number of coefficients, which we prove to be fixed uniquely by imposing vanishing conditions on 5d BPS numbers as boundary conditions. We demonstrate the feasibility of our approach with many examples, in particular solving the E-string and M-string theories including mass deformations, as well as theories constructed as chains of these. We make contact with previous work by showing that spurious singularities are cancelled when the partition function is written in the form advocated here. Finally, we use the BPS invariants of the E-string thus obtained to test a generalization of the Goettsche-Nakajima-Yoshioka $K$-theoretic blowup equation, as inspired by the Grassi-Hatsuda-Marino conjecture, to generic local Calabi-Yau threefolds.

قيم البحث

اقرأ أيضاً

We study a perturbation family of N=2 3d gauge theories and its relation to quantum K-theory. A 3d version of the Intriligator-Vafa formula is given for the quantum K-theory ring of Grassmannians. The 3d BPS half-index of the gauge theory is connecte d to the theory of bilateral hypergeometric q-series, and to modular q-characters of a class of conformal field theories in a certain massless limit. Turning on 3d Wilson lines at torsion points leads to mock modular behavior. Perturbed correlators in the IR regime are computed by determining the UV-IR map in the presence of deformations.
A string theoretic derivation is given for the conjecture of Hausel, Letellier, and Rodriguez-Villegas on the cohomology of character varieties with marked points. Their formula is identified with a refined BPS expansion in the stable pair theory of a local root stack, generalizing previous work of the first two authors in collaboration with G. Pan. Haimans geometric construction for Macdonald polynomials is shown to emerge naturally in this context via geometric engineering. In particular this yields a new conjectural relation between Macdonald polynomials and refined local orbifold curve counting invariants. The string theoretic approach also leads to a new spectral cover construction for parabolic Higgs bundles in terms of holomorphic symplectic orbifolds.
We apply the modular approach to computing the topological string partition function on non-compact elliptically fibered Calabi-Yau 3-folds with higher Kodaira singularities in the fiber. The approach consists in making an ansatz for the partition fu nction at given base degree, exact in all fiber classes to arbitrary order and to all genus, in terms of a rational function of weak Jacobi forms. Our results yield, at given base degree, the elliptic genus of the corresponding non-critical 6d string, and thus the associated BPS invariants of the 6d theory. The required elliptic indices are determined from the chiral anomaly 4-form of the 2d worldsheet theories, or the 8-form of the corresponding 6d theories, and completely fix the holomorphic anomaly equation constraining the partition function. We introduce subrings of the known rings of Weyl invariant Jacobi forms which are adapted to the additional symmetries of the partition function, making its computation feasible to low base wrapping number. In contradistinction to the case of simpler singularities, generic vanishing conditions on BPS numbers are no longer sufficient to fix the modular ansatz at arbitrary base wrapping degree. We show that to low degree, imposing exact vanishing conditions does suffice, and conjecture this to be the case generally.
Recent work has established a uniform characterization of most 6D SCFTs in terms of generalized quivers with conformal matter. Compactification of the partial tensor branch deformation of these theories on a $T^2$ leads to 4D $mathcal{N} = 2$ SCFTs w hich are also generalized quivers. Taking products of bifundamental conformal matter operators, we present evidence that there are large R-charge sectors of the theory in which operator mixing is captured by a 1D spin chain Hamiltonian with operator scaling dimensions controlled by a perturbation series in inverse powers of the R-charge. We regulate the inherent divergences present in the 6D computations with the associated 5D Kaluza--Klein theory. In the case of 6D SCFTs obtained from M5-branes probing a $mathbb{C}^{2}/mathbb{Z}_{K}$ singularity, we show that there is a class of operators where the leading order mixing effects are captured by the integrable Heisenberg $XXX_{s=1/2}$ spin chain with open boundary conditions, and similar considerations hold for its $T^2$ reduction to a 4D $mathcal{N}=2$ SCFT. In the case of M5-branes probing more general D- and E-type singularities where generalized quivers have conformal matter, we argue that similar mixing effects are captured by an integrable $XXX_{s}$ spin chain with $s>1/2$. We also briefly discuss some generalizations to other operator sectors as well as little string theories.
150 - Jonathan J. Heckman 2020
We consider a class of 6D superconformal field theories (SCFTs) which have a large $N$ limit and a semi-classical gravity dual description. Using the quiver-like structure of 6D SCFTs we study a subsector of operators protected from large operator mi xing. These operators are characterized by degrees of freedom in a one-dimensional spin chain, and the associated states are generically highly entangled. This provides a concrete realization of qubit-like states in a strongly coupled quantum field theory. Renormalization group flows triggered by deformations of 6D UV fixed points translate to specific deformations of these one-dimensional spin chains. We also present a conjectural spin chain Hamiltonian which tracks the evolution of these states as a function of renormalization group flow, and study qubit manipulation in this setting. Similar considerations hold for theories without $AdS$ duals, such as 6D little string theories and 4D SCFTs obtained from compactification of the partial tensor branch theory on a $T^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا