ترغب بنشر مسار تعليمي؟ اضغط هنا

Infinitely many 4d $mathcal{N}=2$ SCFTs with $a=c$ and beyond

92   0   0.0 ( 0 )
 نشر من قبل Monica Jinwoo Kang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a set of four-dimensional $mathcal{N}=2$ superconformal field theories (SCFTs) $widehat{Gamma}(G)$ labeled by a pair of simply-laced Lie groups $Gamma$ and $G$. They are constructed out of gauging a number of $mathcal{D}_p(G)$ and $(G, G)$ conformal matter SCFTs; therefore they do not have Lagrangian descriptions in general. For $Gamma = D_4, E_6, E_7, E_8$ and some special choices of $G$, the resulting theories have identical central charges $(a=c)$ without taking any large $N$ limit. Moreover, we find that the Schur indices for such theories can be written in terms of that of $mathcal{N}=4$ super Yang-Mills theory upon rescaling fugacities. Especially, we find that the Schur index of $widehat{D}_4(SU(N))$ theory for $N$ odd is written in terms of MacMahons generalized sum-of-divisor function, which is quasi-modular. For generic choices of $Gamma$ and $G$, it can be regarded as a generalization of the affine quiver gauge theory obtained from $D3$-branes probing an ALE singularity of type $Gamma$. We also comment on a tantalizing connection regarding the theories labeled by $Gamma$ in the Deligne-Cvitanovic exceptional series.



قيم البحث

اقرأ أيضاً

S-folds are a non-perturbative generalization of orientifold 3-planes which figure prominently in the construction of 4D $mathcal{N} = 3$ SCFTs and have also recently been used to realize examples of 4D $mathcal{N} = 2$ SCFTs. In this paper we develo p a general procedure for reading off the flavor symmetry experienced by D3-branes probing 7-branes in the presence of an S-fold. We develop an S-fold generalization of orientifold projection which applies to non-perturbative string junctions. This procedure leads to a different 4D flavor symmetry algebra depending on whether the S-fold supports discrete torsion. We also show that this same procedure allows us to read off admissible representations of the flavor symmetry in the associated 4D $mathcal{N} = 2$ SCFTs. Furthermore this provides a prescription for how to define F-theory in the presence of S-folds with discrete torsion.
We construct several novel examples of 3d $mathcal{N}=2$ models whose free energy scales as $N^{3/2}$ at large $N$. This is the first step towards the identification of field theories with an M-theory dual. Furthermore, we match the volumes extracted from the free energy with the ones computed from the Hilbert series. We perform a similar analysis for the 4d parents of the 3d models, matching the volume extracted from the $a$ conformal anomaly to that obtained from the Hilbert series. For some of the 4d models, we show the existence of a Sasaki-Einstein metric on the internal space of the candidate type IIB gravity dual.
We propose a generalization of S-folds to 4d $mathcal{N}=2$ theories. This construction is motivated by the classification of rank one 4d $mathcal{N}=2$ super-conformal field theories (SCFTs), which we reproduce from D3-branes probing a configuration of $mathcal{N}=2$ S-folds combined with 7-branes. The main advantage of this point of view is that realizes both Coulomb and Higgs branch flows and allows for a straight forward generalization to higher rank theories.
In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1 $mathcal{N}=2$ SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 $mathcal{N}=2$ SCFTs. The glob al symmetries that can be gauged involve a non-trivial combination of discrete subgroups of the $U(1)_R$, low-energy EM duality group $SL(2,mathbb{Z})$, and the outer automorphism group of the flavor symmetry algebra, Out($F$). The theories that we construct are remarkable in many ways: (i) two of them have exceptional $F_4$ and $G_2$ flavor groups; (ii) they substantially complete the picture of the landscape of rank-1 $mathcal{N}=2$ SCFTs as they realize all but one of the remaining consistent rank-1 Seiberg-Witten geometries that we previously constructed but were not associated to known SCFTs; and (iii) some of them have enlarged $mathcal{N}=3$ SUSY, and have not been previously constructed. They are also examples of SCFTs which violate the Shapere-Tachikawa relation between the conformal central charges and the scaling dimension of the Coulomb branch vev. We propose a modification of the formulas computing these central charges from the topologically twisted Coulomb branch partition function which correctly compute them for discretely gauged theories.
We initiate a systematic analysis of moduli spaces of vacua of four dimensional $mathcal{N}=3$ SCFTs. Our analysis is based on the one hand on the properties of $mathcal{N}=3$ chiral rings --- which we review in detail and contrast with chiral rings of theories with less supersymmetry --- and on the other hand on constraints coming from low-energy supersymmetry. This leads us to introduce a new type of geometric structure, which characterizes $mathcal{N}=3$ SCFT moduli spaces, and that we call $triple special Kahler$ (TSK). A rank-$n$ TSK moduli space has complex dimension $3n$, and is singular at complex co-dimension 3 subspaces where charged states become massless. The structure of singularities defines a stratification of the TSK space in terms of lower-dimensional TSK manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا