ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

87   0   0.0 ( 0 )
 نشر من قبل Emily Martin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine 131 new medium-resolution (R~2000) J-band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5-T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all M6-L7 objects in our sample by measuring equivalent widths (EW) of the K I lines at 1.1692, 1.1778, 1.2529 um, and the 1.2 um FeHJ absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak - at ~L5 and T5 - in K I EW as a function of spectral type. We analyze K I EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6-L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current datasets cannot be used to provide a precise age estimate.



قيم البحث

اقرأ أيضاً

We report multi-epoch radial velocities, rotational velocities, and atmospheric parameters for 37 T-type brown dwarfs observed with Keck/NIRSPEC. Using a Markov Chain Monte Carlo forward-modeling method, we achieve median precisions of 0.5 km s$^{-1} $ and 0.9 km s$^{-1}$ for radial and rotational velocities, respectively. All of the T dwarfs in our sample are thin disk brown dwarfs. We confirm previously reported moving group associations for four T dwarfs. However, the lack of spectral indicators of youth in two of these sources suggests that these are chance alignments. We confirm two previously un-resolved binary candidates, the T0+T4.5 2MASS J11061197+2754225 and the L7+T3.5 2MASS J21265916+7617440, with orbital periods of 4 yr and 12 yr, respectively. We find a kinematic age of 3.5$pm$0.3 Gyr for local T dwarfs, consistent with nearby late-M dwarfs (4.1$pm$0.3 Gyr). Removal of thick disk L dwarfs in the local ultracool dwarf sample gives a similar age for L dwarfs (4.2$pm$0.3 Gyr), largely resolving the local L dwarf age anomaly. The kinematic ages of local late-M, L, and T dwarfs can be accurately reproduced with population simulations incorporating standard assumptions of the mass function, star formation rate, and brown dwarf evolutionary models. A kinematic dispersion break is found at the L4$-$L6 subtypes, likely reflecting the terminus of the stellar Main Sequence. We provide a compilation of precise radial velocities for 172 late-M, L, and T dwarfs within $sim$20 pc of the Sun.
We present a 0.6-4.1 micron spectroscopic sequence of M, L, and T dwarfs. The spectra have R~2000 from 0.9 to 2.4 microns and R=2500-200 from 2.9 to 4.1 microns. These new data nearly double the number of L and T dwarfs that have reported L-band spec tra. The near-infrared spectra are combined with previously published red-optical spectra to extend the wavelength coverage to ~0.6 microns. Prominent atomic and molecular absorption features are identified including neutral lines of Al, Fe, Mg, Ca, Ti, Na, and K and 19 new weak CH_4 absorption features in the H-band spectra of mid- to late-type T dwarfs. In addition, we detect for the first time the 0-0 band of the A ^4Pi - X ^4Sigma^- transition of VO at ~1.06 microns in the spectra of L dwarfs and the P and R branches of the u_3 band of CH_4 in the spectrum of a T dwarf. The equivalent widths of the refractory atomic features all decrease with increasing spectral type and are absent by a spectral type of ~L0, except for the 1.189 micron Fe I line which persists to at least ~L3. We compute the bolometric luminosities of the dwarfs in our sample with measured parallaxes and find good agreement with previously published results that use L-band photometry to account for the flux emitted from 2.5 to 3.6 microns. Finally, 2MASS J2224381-0158521 (L4.5) has an anomalously red spectrum and the strongest Delta u=+2 CO bands in our sample. This may be indicative of unusually thick condensate clouds and/or low surface gravity.
In our effort to complete the census of low-mass stars and brown dwarfs in the immediate Solar Neighborhood, we present spectra, photometry, proper motions, and distance estimates for forty-two low-mass star and brown dwarf candidates discovered by t he Wide-field Infrared Survey Explorer (WISE). We also present additional follow-up information on twelve candidates selected using WISE data but previously published elsewhere. The new discoveries include fifteen M dwarfs, seventeen L dwarfs, five T dwarfs, and five objects of other type. Among these discoveries is a newly identified unusually red L dwarf (WISE J223527.07+451140.9), four peculiar L dwarfs whose spectra are most readily explained as unresolved L+T binary systems, and a T9 dwarf (WISE J124309.61+844547.8). We also show that the recently discovered red L dwarf WISEP J004701.06+680352.1 (Gizis et al. 2012) may be a low-gravity object and hence young and potentially low mass (< 25 MJup).
M dwarfs are ideal targets for the search of Earth-size planets in the habitable zone using the radial velocity method, attracting the attention of many ongoing surveys. As a by-product of these surveys, new multiple stellar systems are also found. T his is the case also for the CARMENES survey, from which nine new SB2 systems have already been announced. Throughout the five years of the survey, the accumulation of new observations has resulted in the detection of several new multiple stellar systems with long periods and low radial-velocity amplitudes. Here, we newly characterise the spectroscopic orbits and constrain the masses of eight systems and update the properties of a system that we reported earlier. We derive the radial velocities of the stars using two-dimensional cross correlation techniques and template matching. The measurements are modelled to determine the orbital parameters of the systems. We combine CARMENES spectroscopic observations with archival high-resolution spectra from other instruments to increase the time-span of the observations and improve our analysis. When available, we also added archival photometric, astrometric, and adaptive optics imaging data to constrain the rotation periods and absolute masses of the components. We determine the spectroscopic orbits of nine multiple systems, eight of which are presented for the first time. The sample is composed of five SB1s, two SB2s, and two ST3s. The companions of two of the single-line binaries, GJ 3626 and GJ 912, have minimum masses below the stellar boundary and, thus, could be brown dwarfs. We find a new white dwarf in a close binary orbit around the M star GJ 207.1. From a global fit to radial velocities and astrometric measurements, we are able to determine the absolute masses of the components of GJ 282C, which is one of the youngest systems with measured dynamical masses.
We present a catalog of 9888 M, L and T dwarfs detected in the Pan-STARRS1 3$pi$ Survey (PS1), covering three-quarters of the sky. Our catalog contains nearly all known objects of spectral types L0-T2 in the PS1 field, with objects as early as M0 and as late as T9, and includes PS1, 2MASS, AllWISE, and Gaia DR1 photometry. We analyze the different types of photometry reported by PS1, and use two types in our catalog to maximize both depth and accuracy. Using parallaxes from the literature, we construct empirical SEDs for field ultracool dwarfs spanning 0.5-12 $mu$m. We determine typical colors of M0-T9 dwarfs, and we highlight the distinctive colors of subdwarfs and young objects. Our catalog includes 492 L dwarfs detected in $r_{rm P1}$, the largest sample of L dwarfs detected at such blue wavelengths. We combine astrometry from PS1, 2MASS, and Gaia DR1 to calculate new proper motions for our catalog. We achieve a median precision of 2.9 mas yr$^{-1}$, a factor of $approx$3-10 improvement over previous large catalogs. Our catalog contains proper motions for 2405 M6-T9 dwarfs and includes the largest set of homogeneous proper motions for L and T dwarfs published to date, 406 objects for which there were no previous measurements, and 1176 objects for which we improve upon previous literature values. We analyze the kinematics of ultracool dwarfs in our catalog and find evidence that bluer but otherwise generic late-M and L field dwarfs (i.e., not subdwarfs) tend to have higher tangential velocities compared to typical field objects. With the public release of the PS1 data, this survey will continue to be an essential tool for characterizing the ultracool dwarf population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا