ترغب بنشر مسار تعليمي؟ اضغط هنا

The Brown Dwarf Kinematics Project (BDKP). V. Radial and Rotational Velocities of T Dwarfs from Keck/NIRSPEC High-Resolution Spectroscopy

136   0   0.0 ( 0 )
 نشر من قبل Chih-Chun Hsu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report multi-epoch radial velocities, rotational velocities, and atmospheric parameters for 37 T-type brown dwarfs observed with Keck/NIRSPEC. Using a Markov Chain Monte Carlo forward-modeling method, we achieve median precisions of 0.5 km s$^{-1}$ and 0.9 km s$^{-1}$ for radial and rotational velocities, respectively. All of the T dwarfs in our sample are thin disk brown dwarfs. We confirm previously reported moving group associations for four T dwarfs. However, the lack of spectral indicators of youth in two of these sources suggests that these are chance alignments. We confirm two previously un-resolved binary candidates, the T0+T4.5 2MASS J11061197+2754225 and the L7+T3.5 2MASS J21265916+7617440, with orbital periods of 4 yr and 12 yr, respectively. We find a kinematic age of 3.5$pm$0.3 Gyr for local T dwarfs, consistent with nearby late-M dwarfs (4.1$pm$0.3 Gyr). Removal of thick disk L dwarfs in the local ultracool dwarf sample gives a similar age for L dwarfs (4.2$pm$0.3 Gyr), largely resolving the local L dwarf age anomaly. The kinematic ages of local late-M, L, and T dwarfs can be accurately reproduced with population simulations incorporating standard assumptions of the mass function, star formation rate, and brown dwarf evolutionary models. A kinematic dispersion break is found at the L4$-$L6 subtypes, likely reflecting the terminus of the stellar Main Sequence. We provide a compilation of precise radial velocities for 172 late-M, L, and T dwarfs within $sim$20 pc of the Sun.

قيم البحث

اقرأ أيضاً

We combine 131 new medium-resolution (R~2000) J-band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass sta rs and brown dwarfs spanning spectral types M5-T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all M6-L7 objects in our sample by measuring equivalent widths (EW) of the K I lines at 1.1692, 1.1778, 1.2529 um, and the 1.2 um FeHJ absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak - at ~L5 and T5 - in K I EW as a function of spectral type. We analyze K I EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6-L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current datasets cannot be used to provide a precise age estimate.
85 - Adam Burgasser 2019
High resolution spectroscopy of the lowest-mass stars and brown dwarfs reveals their origins, multiplicity, compositions and physical properties, with implications for the star formation and chemical evolution history of the Milky Way. We motivate th e need for high-resolution, infrared spectroscopic surveys to reach these faint sources.
The rotational spectral modulation (spectro-photometric variability) of brown dwarfs is usually interpreted as a sign of the presence of inhomogeneous cloud covers in the atmosphere. This paper aims at exploring the role of temperature fluctuations i n these spectral modulations. These fluctuations could naturally arise in a convective atmosphere impacted by diabatic processes such as complex chemistry, i.e. the recently proposed mechanism to explain the L/T transition: CO/CH4 radiative convection. We use the 1D radiative/convective code ATMO with ad-hoc modifications of the temperature gradient to model the rotational spectral modulation of 2MASS 1821, 2MASS 0136, and PSO 318.5-22. Modeling the spectral bright-to-faint ratio of the modulation of 2MASS 1821, 2MASS 0136, and PSO 318.5-22 shows that most spectral characteristics can be reproduced by temperature variations alone. Furthermore, the approximately anti-correlated variability between different wavelengths can be easily interpreted as a change in the temperature gradient in the atmosphere which is the consequence we expect from CO/CH4 radiative convection to explain the L/T transition. The deviation from an exact anti-correlation could then be interpreted as a phase shift similar to the hot-spot shift a different bandpasses in the atmosphere of hot Jupiters. Our results suggest that the rotational spectral modulation from cloud-opacity and temperature variations are degenerate. The detection of direct cloud spectral signatures, e.g. the silicate absorption feature at 10 um, would help to confirm the presence of clouds and their contribution to spectral modulations. Future studies looking at the differences in the spectral modulation of objects with and without the silicate absorption feature may give us some insight on how to distinguish cloud-opacity fluctuations from temperature fluctuations.
We present trigonometric parallax and proper motion measurements for two T-type brown dwarfs. We derive our measurements from infrared laser guide star adaptive optics observations spanning five years from the ShaneAO/SHARCS and NIRC2/medium-cam inst ruments on the Shane and Keck telescopes, respectively. To improve our astrometric precision, we measure and apply a distortion correction to our fields for both instruments. We also transform the Keck and ShaneAO astrometric reference frames onto the ICRS using five-parameter parallax and proper motion solutions for background reference stars from Gaia DR2. Fitting for parallax and proper motion, we measure parallaxes of $73.5pm9.2$ mas and $70.1pm6.7$ mas for WISEJ19010703+47181688 (WISE1901) and WISEJ21543294+59421370 (WISE2154), respectively. We utilize Monte Carlo methods to estimate the error in our sparse field methods, taking into account overfitting and differential atmospheric refraction. Comparing to previous measurements in the literature, all of our parallax and proper motion values fall within $2sigma$ of the published measurements, and 4 of 6 measurements are within $1sigma$. These data are among the first parallax measurements of these T dwarfs and serve as precise measurements for calibrating stellar formation models. These two objects are the first results of an ongoing survey of T dwarfs with Keck/NIRC2 and the Shane Adaptive Optics system at Lick Observatory.
Context. Variability caused by stellar activity represents a challenge to the discovery and characterization of terrestrial exoplanets and complicates the interpretation of atmospheric planetary signals. Aims. We aim to use a detailed modeling tool to reproduce the effect of active regions on radial velocity measurements, which aids the identification of the key parameters that have an impact on the induced variability. Methods. We analyzed the effect of stellar activity on radial velocities as a function of wavelength by simulating the impact of the properties of spots, shifts induced by convective motions, and rotation. We focused our modeling effort on the active star YZ CMi (GJ 285), which was photometrically and spectroscopically monitored with CARMENES and the Telescopi Joan Oro. Results. We demonstrate that radial velocity curves at different wavelengths yield determinations of key properties of active regions, including spot filling factor, temperature contrast, and location, thus solving the degeneracy between them. Most notably, our model is also sensitive to convective motions. Results indicate a reduced convective shift for M dwarfs when compared to solar-type stars (in agreement with theoretical extrapolations) and points to a small global convective redshift instead of blueshift. Conclusions. Using a novel approach based on simultaneous chromatic radial velocities and light curves, we can set strong constraints on stellar activity, including an elusive parameter such as the net convective motion effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا