ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a general framework for tensor singular value decomposition (tensor SVD), which focuses on the methodology and theory for extracting the hidden low-rank structure from high-dimensional tensor data. Comprehensive results are developed on both the statistical and computational limits for tensor SVD. This problem exhibits three different phases according to the signal-to-noise ratio (SNR). In particular, with strong SNR, we show that the classical higher-order orthogonal iteration achieves the minimax optimal rate of convergence in estimation; with weak SNR, the information-theoretical lower bound implies that it is impossible to have consistent estimation in general; with moderate SNR, we show that the non-convex maximum likelihood estimation provides optimal solution, but with NP-hard computational cost; moreover, under the hardness hypothesis of hypergraphic planted clique detection, there are no polynomial-time algorithms performing consistently in general.
We consider the phase retrieval problem of reconstructing a $n$-dimensional real or complex signal $mathbf{X}^{star}$ from $m$ (possibly noisy) observations $Y_mu = | sum_{i=1}^n Phi_{mu i} X^{star}_i/sqrt{n}|$, for a large class of correlated real a
We study the problem of distributional approximations to high-dimensional non-degenerate $U$-statistics with random kernels of diverging orders. Infinite-order $U$-statistics (IOUS) are a useful tool for constructing simultaneous prediction intervals
In this work we study the fundamental limits of approximate recovery in the context of group testing. One of the most well-known, theoretically optimal, and easy to implement testing procedures is the non-adaptive Bernoulli group testing problem, whe
We propose a novel probabilistic method for detection of objects in noisy images. The method uses results from percolation and random graph theories. We present an algorithm that allows to detect objects of unknown shapes in the presence of random no
We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a low-tubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the