ﻻ يوجد ملخص باللغة العربية
Using the phenomenological quantum friction models introduced by Caldirola-Kanai, Kostin, and Albrecht, we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.
While Josephson-like junctions, transiently established in heavy ion collisions ($tau_{coll}approx10^{-21}$ s) between superfluid nuclei --through which Cooper pair tunneling ($Q$-value $Q_{2n}$) proceeds mainly in terms of successive transfer of ent
In this paper we revisit the one-dimensional tunneling problem. We consider Kembles approximation for the transmission coefficient. We show how this approximation can be extended to above-barrier energies by performing the analytical continuation of
We introduce a type of quantum dissipation -- local quantum friction -- by adding to the Hamiltonian a local potential that breaks time-reversal invariance so as to cool the system. Unlike the Kossakowski-Lindblad master equation, local quantum frict
Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type
The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum couplings. It allows a quantit