ﻻ يوجد ملخص باللغة العربية
The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum couplings. It allows a quantitative study of the role and importance of quantum decoherence in nuclear scattering. Formulae of asymptotic observables that can reveal effects of quantum decoherence are given. A method for extracting energy-resolved scattering information from the time-dependent density matrix is introduced. As an example, model calculations are carried out for the low-energy collision of the $^{16}$O projectile on the $^{154}$Sm target.
Atomic nuclei are complex, quantum many-body systems whose structure manifests itself through intrinsic quantum states associated with different excitation modes or degrees of freedom. Collective modes (vibration and/or rotation) dominate at low ener
Time-dependent density-matrix propagation is used to demonstrate, in a schematic model of an open quantum system, that the complex potential approach and the Lindblad dissipative dynamics are emph{not} equivalent. While the former preserves coherence
Background: Near-barrier fusion can be strongly affected by the coupling between relative motion and internal degrees of freedom of the collision partners. The time-dependent Hartree-Fock (TDHF) theory and the coupled-channels (CC) method are standar
Using a random-matrix approach and Monte-Carlo simulations, we generate scattering matrices and cross sections for compound-nucleus reactions. In the absence of direct reactions we compare the average cross sections with the analytic solution given b
We first predict the ground-state properties of Ca isotopes, using the Gogny-D1S Hartree-Fock-Bogoliubov (GHFB) with and without the angular momentum projection (AMP). We find that $^{64}$Ca is an even-dripline nucleus and $^{59}$Ca is an odd-driplin