ﻻ يوجد ملخص باللغة العربية
We study the structure of stationary non equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated to functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.
Systems kept out of equilibrium in stationary states by an external source of energy store an energy $Delta U=U-U_0$. $U_0$ is the internal energy at equilibrium state, obtained after the shutdown of energy input. We determine $Delta U$ for two model
We examine how systems in non-equilibrium steady states close to a continuous phase transition can still be described by a Landau potential if one forgoes the assumption of analyticity. In a system simultaneously coupled to several baths at different
Modern methods for sampling rugged landscapes in state space mainly rely on knowledge of the relative probabilities of microstates, which is given by the Boltzmann factor for equilibrium systems. In principle, trajectory reweighting provides an elega
We extend the notion of the Eigenstate Thermalization Hypothesis (ETH) to Open Quantum Systems governed by the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) Master Equation. We present evidence that the eigenstates of non-equilibrium steady state (NES
While studying systems driven out of equilibrium, one usually employs a drive that is not directly coupled to the degrees of freedom of the system. In contrast to such a case, we here unveil a hitherto unexplored situation of state-dependent driving,