ﻻ يوجد ملخص باللغة العربية
Internet of things wireless networking with long range, low power and low throughput is raising as a new paradigm enabling to connect trillions of devices efficiently. In such networks with low power and bandwidth devices, localization becomes more challenging. In this work we take a closer look at the underlying aspects of received signal strength indicator (RSSI) based localization in UNB long-range IoT networks such as Sigfox. Firstly, the RSSI has been used for fingerprinting localization where RSSI measurements of GPS anchor nodes have been used as landmarks to classify other nodes into one of the GPS nodes classes. Through measurements we show that a location classification accuracy of 100% is achieved when the classes of nodes are isolated. When classes are approaching each other, our measurements show that we can still achieve an accuracy of 85%. Furthermore, when the density of the GPS nodes is increasing, we can rely on peer-to-peer triangulation and thus improve the possibility of localizing nodes with an error less than 20m from 20% to more than 60% of the nodes in our measurement scenario. 90% of the nodes is localized with an error of less than 50m in our experiment with non-optimized anchor node locations.
Localization in long-range Internet of Things networks is a challenging task, mainly due to the long distances and low bandwidth used. Moreover, the cost, power, and size limitations restrict the integration of a GPS receiver in each device. In this
Low-power wide-area (LPWA) networks are attracting extensive attention because of their abilities to offer low-cost and massive connectivity to Internet of Things (IoT) devices distributed over wide geographical areas. This article provides a brief o
Due to the flexibility and low operational cost, dispatching unmanned aerial vehicles (UAVs) to collect information from distributed sensors is expected to be a promising solution in Internet of Things (IoT), especially for time-critical applications
Caching has been regarded as a promising technique to alleviate energy consumption of sensors in Internet of Things (IoT) networks by responding to users requests with the data packets stored in the edge caching node (ECN). For real-time applications
We propose using Carrier Sensing (CS) for distributed interference management in millimeter-wave (mmWave) cellular networks where spectrum is shared by multiple operators that do not coordinate among themselves. In addition, even the base station sit