ﻻ يوجد ملخص باللغة العربية
Due to the flexibility and low operational cost, dispatching unmanned aerial vehicles (UAVs) to collect information from distributed sensors is expected to be a promising solution in Internet of Things (IoT), especially for time-critical applications. How to maintain the information freshness is a challenging issue. In this paper, we investigate the fresh data collection problem in UAV-assisted IoT networks. Particularly, the UAV flies towards the sensors to collect status update packets within a given duration while maintaining a non-negative residual energy. We formulate a Markov Decision Process (MDP) to find the optimal flight trajectory of the UAV and transmission scheduling of the sensors that minimizes the weighted sum of the age of information (AoI). A UAV-assisted data collection algorithm based on deep reinforcement learning (DRL) is further proposed to overcome the curse of dimensionality. Extensive simulation results demonstrate that the proposed DRL-based algorithm can significantly reduce the weighted sum of the AoI compared to other baseline algorithms.
Unmanned aerial vehicles (UAVs) are expected to be a key component of the next-generation wireless systems. Due to their deployment flexibility, UAVs are being considered as an efficient solution for collecting information data from ground nodes and
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a sophisticated three-dimensional (3D) environment, where the UAVs trajectory is optimized to efficiently collect data from multiple IoT ground
This paper explores the feasibility of leveraging concepts from deep reinforcement learning (DRL) to enable dynamic resource management in Wi-Fi networks implementing distributed multi-user MIMO (D-MIMO). D-MIMO is a technique by which a set of wirel
Unmanned Aerial Vehicles (UAVs) have been emerging as an effective solution for IoT data collection networks thanks to their outstanding flexibility, mobility, and low operation costs. However, due to the limited energy and uncertainty from the data
In this paper, an unmanned aerial vehicle (UAV)-assisted wireless network is considered in which a battery-constrained UAV is assumed to move towards energy-constrained ground nodes to receive status updates about their observed processes. The UAVs f