ترغب بنشر مسار تعليمي؟ اضغط هنا

CDC: Convolutional-De-Convolutional Networks for Precise Temporal Action Localization in Untrimmed Videos

162   0   0.0 ( 0 )
 نشر من قبل Zheng Shou
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Temporal action localization is an important yet challenging problem. Given a long, untrimmed video consisting of multiple action instances and complex background contents, we need not only to recognize their action categories, but also to localize the start time and end time of each instance. Many state-of-the-art systems use segment-level classifiers to select and rank proposal segments of pre-determined boundaries. However, a desirable model should move beyond segment-level and make dense predictions at a fine granularity in time to determine precise temporal boundaries. To this end, we design a novel Convolutional-De-Convolutional (CDC) network that places CDC filters on top of 3D ConvNets, which have been shown to be effective for abstracting action semantics but reduce the temporal length of the input data. The proposed CDC filter performs the required temporal upsampling and spatial downsampling operations simultaneously to predict actions at the frame-level granularity. It is unique in jointly modeling action semantics in space-time and fine-grained temporal dynamics. We train the CDC network in an end-to-end manner efficiently. Our model not only achieves superior performance in detecting actions in every frame, but also significantly boosts the precision of localizing temporal boundaries. Finally, the CDC network demonstrates a very high efficiency with the ability to process 500 frames per second on a single GPU server. We will update the camera-ready version and publish the source codes online soon.

قيم البحث

اقرأ أيضاً

Temporal action localization is a recently-emerging task, aiming to localize video segments from untrimmed videos that contain specific actions. Despite the remarkable recent progress, most two-stage action localization methods still suffer from impr ecise temporal boundaries of action proposals. This work proposes a novel integrated temporal scale aggregation network (TSA-Net). Our main insight is that ensembling convolution filters with different dilation rates can effectively enlarge the receptive field with low computational cost, which inspires us to devise multi-dilation temporal convolution (MDC) block. Furthermore, to tackle video action instances with different durations, TSA-Net consists of multiple branches of sub-networks. Each of them adopts stacked MDC blocks with different dilation parameters, accomplishing a temporal receptive field specially optimized for specific-duration actions. We follow the formulation of boundary point detection, novelly detecting three kinds of critical points (ie, starting / mid-point / ending) and pairing them for proposal generation. Comprehensive evaluations are conducted on two challenging video benchmarks, THUMOS14 and ActivityNet-1.3. Our proposed TSA-Net demonstrates clear and consistent better performances and re-calibrates new state-of-the-art on both benchmarks. For example, our new record on THUMOS14 is 46.9% while the previous best is 42.8% under [email protected].
We address temporal action localization in untrimmed long videos. This is important because videos in real applications are usually unconstrained and contain multiple action instances plus video content of background scenes or other activities. To ad dress this challenging issue, we exploit the effectiveness of deep networks in temporal action localization via three segment-based 3D ConvNets: (1) a proposal network identifies candidate segments in a long video that may contain actions; (2) a classification network learns one-vs-all action classification model to serve as initialization for the localization network; and (3) a localization network fine-tunes on the learned classification network to localize each action instance. We propose a novel loss function for the localization network to explicitly consider temporal overlap and therefore achieve high temporal localization accuracy. Only the proposal network and the localization network are used during prediction. On two large-scale benchmarks, our approach achieves significantly superior performances compared with other state-of-the-art systems: mAP increases from 1.7% to 7.4% on MEXaction2 and increases from 15.0% to 19.0% on THUMOS 2014, when the overlap threshold for evaluation is set to 0.5.
The ability to identify and temporally segment fine-grained human actions throughout a video is crucial for robotics, surveillance, education, and beyond. Typical approaches decouple this problem by first extracting local spatiotemporal features from video frames and then feeding them into a temporal classifier that captures high-level temporal patterns. We introduce a new class of temporal models, which we call Temporal Convolutional Networks (TCNs), that use a hierarchy of temporal convolutions to perform fine-grained action segmentation or detection. Our Encoder-Decoder TCN uses pooling and upsampling to efficiently capture long-range temporal patterns whereas our Dilated TCN uses dilated convolutions. We show that TCNs are capable of capturing action compositions, segment durations, and long-range dependencies, and are over a magnitude faster to train than competing LSTM-based Recurrent Neural Networks. We apply these models to three challenging fine-grained datasets and show large improvements over the state of the art.
The discriminative power of modern deep learning models for 3D human action recognition is growing ever so potent. In conjunction with the recent resurgence of 3D human action representation with 3D skeletons, the quality and the pace of recent progr ess have been significant. However, the inner workings of state-of-the-art learning based methods in 3D human action recognition still remain mostly black-box. In this work, we propose to use a new class of models known as Temporal Convolutional Neural Networks (TCN) for 3D human action recognition. Compared to popular LSTM-based Recurrent Neural Network models, given interpretable input such as 3D skeletons, TCN provides us a way to explicitly learn readily interpretable spatio-temporal representations for 3D human action recognition. We provide our strategy in re-designing the TCN with interpretability in mind and how such characteristics of the model is leveraged to construct a powerful 3D activity recognition method. Through this work, we wish to take a step towards a spatio-temporal model that is easier to understand, explain and interpret. The resulting model, Res-TCN, achieves state-of-the-art results on the largest 3D human action recognition dataset, NTU-RGBD.
Skeleton-based human action recognition has attracted much attention with the prevalence of accessible depth sensors. Recently, graph convolutional networks (GCNs) have been widely used for this task due to their powerful capability to model graph da ta. The topology of the adjacency graph is a key factor for modeling the correlations of the input skeletons. Thus, previous methods mainly focus on the design/learning of the graph topology. But once the topology is learned, only a single-scale feature and one transformation exist in each layer of the networks. Many insights, such as multi-scale information and multiple sets of transformations, that have been proven to be very effective in convolutional neural networks (CNNs), have not been investigated in GCNs. The reason is that, due to the gap between graph-structured skeleton data and conventional image/video data, it is very challenging to embed these insights into GCNs. To overcome this gap, we reinvent the split-transform-merge strategy in GCNs for skeleton sequence processing. Specifically, we design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition. Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths. Extensive experiments demonstrate that our network outperforms state-of-the-art methods by a significant margin with only 1/5 of the parameters and 1/10 of the FLOPs. Code is available at https://github.com/yellowtownhz/STIGCN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا