Temporal action localization is a recently-emerging task, aiming to localize video segments from untrimmed videos that contain specific actions. Despite the remarkable recent progress, most two-stage action localization methods still suffer from imprecise temporal boundaries of action proposals. This work proposes a novel integrated temporal scale aggregation network (TSA-Net). Our main insight is that ensembling convolution filters with different dilation rates can effectively enlarge the receptive field with low computational cost, which inspires us to devise multi-dilation temporal convolution (MDC) block. Furthermore, to tackle video action instances with different durations, TSA-Net consists of multiple branches of sub-networks. Each of them adopts stacked MDC blocks with different dilation parameters, accomplishing a temporal receptive field specially optimized for specific-duration actions. We follow the formulation of boundary point detection, novelly detecting three kinds of critical points (ie, starting / mid-point / ending) and pairing them for proposal generation. Comprehensive evaluations are conducted on two challenging video benchmarks, THUMOS14 and ActivityNet-1.3. Our proposed TSA-Net demonstrates clear and consistent better performances and re-calibrates new state-of-the-art on both benchmarks. For example, our new record on THUMOS14 is 46.9% while the previous best is 42.8% under [email protected].
Temporal action localization is an important yet challenging problem. Given a long, untrimmed video consisting of multiple action instances and complex background contents, we need not only to recognize their action categories, but also to localize t
he start time and end time of each instance. Many state-of-the-art systems use segment-level classifiers to select and rank proposal segments of pre-determined boundaries. However, a desirable model should move beyond segment-level and make dense predictions at a fine granularity in time to determine precise temporal boundaries. To this end, we design a novel Convolutional-De-Convolutional (CDC) network that places CDC filters on top of 3D ConvNets, which have been shown to be effective for abstracting action semantics but reduce the temporal length of the input data. The proposed CDC filter performs the required temporal upsampling and spatial downsampling operations simultaneously to predict actions at the frame-level granularity. It is unique in jointly modeling action semantics in space-time and fine-grained temporal dynamics. We train the CDC network in an end-to-end manner efficiently. Our model not only achieves superior performance in detecting actions in every frame, but also significantly boosts the precision of localizing temporal boundaries. Finally, the CDC network demonstrates a very high efficiency with the ability to process 500 frames per second on a single GPU server. We will update the camera-ready version and publish the source codes online soon.
We address temporal action localization in untrimmed long videos. This is important because videos in real applications are usually unconstrained and contain multiple action instances plus video content of background scenes or other activities. To ad
dress this challenging issue, we exploit the effectiveness of deep networks in temporal action localization via three segment-based 3D ConvNets: (1) a proposal network identifies candidate segments in a long video that may contain actions; (2) a classification network learns one-vs-all action classification model to serve as initialization for the localization network; and (3) a localization network fine-tunes on the learned classification network to localize each action instance. We propose a novel loss function for the localization network to explicitly consider temporal overlap and therefore achieve high temporal localization accuracy. Only the proposal network and the localization network are used during prediction. On two large-scale benchmarks, our approach achieves significantly superior performances compared with other state-of-the-art systems: mAP increases from 1.7% to 7.4% on MEXaction2 and increases from 15.0% to 19.0% on THUMOS 2014, when the overlap threshold for evaluation is set to 0.5.
Temporal action proposal generation aims to estimate temporal intervals of actions in untrimmed videos, which is a challenging yet important task in the video understanding field. The proposals generated by current methods still suffer from inaccurat
e temporal boundaries and inferior confidence used for retrieval owing to the lack of efficient temporal modeling and effective boundary context utilization. In this paper, we propose Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through local and global temporal context aggregation and complementary as well as progressive boundary refinement. Specifically, we first design a Local-Global Temporal Encoder (LGTE), which adopts the channel grouping strategy to efficiently encode both local and global temporal inter-dependencies. Furthermore, both the boundary and internal context of proposals are adopted for frame-level and segment-level boundary regressions, respectively. Temporal Boundary Regressor (TBR) is designed to combine these two regression granularities in an end-to-end fashion, which achieves the precise boundaries and reliable confidence of proposals through progressive refinement. Extensive experiments are conducted on three challenging datasets: HACS, ActivityNet-v1.3, and THUMOS-14, where TCANet can generate proposals with high precision and recall. By combining with the existing action classifier, TCANet can obtain remarkable temporal action detection performance compared with other methods. Not surprisingly, the proposed TCANet won the 1$^{st}$ place in the CVPR 2020 - HACS challenge leaderboard on temporal action localization task.
We propose StartNet to address Online Detection of Action Start (ODAS) where action starts and their associated categories are detected in untrimmed, streaming videos. Previous methods aim to localize action starts by learning feature representations
that can directly separate the start point from its preceding background. It is challenging due to the subtle appearance difference near the action starts and the lack of training data. Instead, StartNet decomposes ODAS into two stages: action classification (using ClsNet) and start point localization (using LocNet). ClsNet focuses on per-frame labeling and predicts action score distributions online. Based on the predicted action scores of the past and current frames, LocNet conducts class-agnostic start detection by optimizing long-term localization rewards using policy gradient methods. The proposed framework is validated on two large-scale datasets, THUMOS14 and ActivityNet. The experimental results show that StartNet significantly outperforms the state-of-the-art by 15%-30% p-mAP under the offset tolerance of 1-10 seconds on THUMOS14, and achieves comparable performance on ActivityNet with 10 times smaller time offset.
Online action detection in untrimmed videos aims to identify an action as it happens, which makes it very important for real-time applications. Previous methods rely on tedious annotations of temporal action boundaries for training, which hinders the
scalability of online action detection systems. We propose WOAD, a weakly supervised framework that can be trained using only video-class labels. WOAD contains two jointly-trained modules, i.e., temporal proposal generator (TPG) and online action recognizer (OAR). Supervised by video-class labels, TPG works offline and targets at accurately mining pseudo frame-level labels for OAR. With the supervisory signals from TPG, OAR learns to conduct action detection in an online fashion. Experimental results on THUMOS14, ActivityNet1.2 and ActivityNet1.3 show that our weakly-supervised method largely outperforms weakly-supervised baselines and achieves comparable performance to the previous strongly-supervised methods. Beyond that, WOAD is flexible to leverage strong supervision when it is available. When strongly supervised, our method obtains the state-of-the-art results in the tasks of both online per-frame action recognition and online detection of action start.
Guoqiang Gong
,Liangfeng Zheng
,Kun Bai
.
(2019)
.
"Scale Matters: Temporal Scale Aggregation Network for Precise Action Localization in Untrimmed Videos"
.
Yadong Mu
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا