ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Cloud Cores with High Deuterium Fraction: Nobeyama Single-Pointing Survey

168   0   0.0 ( 0 )
 نشر من قبل Gwanjeong Kim
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments ($lambda$ Orionis, Orion A, B, Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45-m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N$_2$H$^+$, c-C$_3$H$_2$) and deuterated molecules (e.g., N$_2$D$^+$, DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores ($>$1 kpc). For $lambda$ Orionis, Orion A, and B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.

قيم البحث

اقرأ أيضاً

We present the results of on-the-fly mapping observations of 44 fields containing 107 SCUBA-2 cores in the emission lines of molecules, N$_2$H$^+$, HC$_3$N, and CCS at 82$-$94 GHz using the Nobeyama 45-m telescope. This study aimed at investigating t he physical properties of cores that show high deuterium fractions and might be close to the onset of star formation. We found that the distributions of the N$_2$H$^+$ and HC$_3$N line emissions are approximately similar to that of 850-$mu$m dust continuum emission, whereas the CCS line emission is often undetected or is distributed in a clumpy structure surrounding the peak position of the 850-$mu$m dust continuum emission. Occasionally (12%), we observe the CCS emission which is an early-type gas tracer toward the young stellar object, probably due to local high excitation. Evolution toward star formation does not immediately affect nonthermal velocity dispersion.
Similarity in shape between the initial mass function (IMF) and the core mass functions (CMFs) in star-forming regions prompts the idea that the IMF originates from the CMF through a self-similar core-to-star mass mapping process. To accurately deter mine the shape of the CMF, we create a sample of 8,431 cores with the dust continuum maps of the Cygnus X giant molecular cloud complex, and design a procedure for deriving the CMF considering the mass uncertainty, binning uncertainty, sample incompleteness, and the statistical errors. The resultant CMF coincides well with the IMF for core masses from a few $M_{odot}$ to the highest masses of 1300 $M_{odot}$ with a power-law of ${rm d}N/{rm d}Mpropto M^{-2.30pm0.04}$, but does not present an obvious flattened turnover in the low-mass range as the IMF does. More detailed inspection reveals that the slope of the CMF steepens with increasing mass. Given the numerous high-mass star-forming activities of Cygnus X, this is in stark contrast with the existing top-heavy CMFs found in high-mass star-forming clumps. We also find that the similarity between the IMF and the mass function of cloud structures is not unique at core scales, but can be seen for cloud structures of up to several pc scales. Finally, our SMA observations toward a subset of the cores do not present evidence for the self-similar mapping. The latter two results indicate that the shape of the IMF may not be directly inherited from the CMF.
We present the first results of high-spectral resolution (0.023 km/s) N$_2$H$^+$ observations of dense gas dynamics at core scales (~0.01 pc) using the recently commissioned Argus instrument on the Green Bank Telescope (GBT). While the fitted linear velocity gradients across the cores measured in our targets nicely agree with the well-known power-law correlation between the specific angular momentum and core size, it is unclear if the observed gradients represent core-scale rotation. In addition, our Argus data reveal detailed and intriguing gas structures in position-velocity (PV) space for all 5 targets studied in this project, which could suggest that the velocity gradients previously observed in many dense cores actually originate from large-scale turbulence or convergent flow compression instead of rigid-body rotation. We also note that there are targets in this study with their star-forming disks nearly perpendicular to the local velocity gradients, which, assuming the velocity gradient represents the direction of rotation, is opposite to what is described by the classical theory of star formation. This provides important insight on the transport of angular momentum within star-forming cores, which is a critical topic on studying protostellar disk formation.
High levels of deuterium fractionation of $rm N_2H^+$ (i.e., $rm D_{frac}^{N_2H^+} gtrsim 0.1$) are often observed in pre-stellar cores (PSCs) and detection of $rm N_2D^+$ is a promising method to identify elusive massive PSCs. However, the physical and chemical conditions required to reach such high levels of deuteration are still uncertain, as is the diagnostic utility of $rm N_2H^+$ and $rm N_2D^+$ observations of PSCs. We perform 3D magnetohydrodynamics simulations of a massive, turbulent, magnetised PSC, coupled with a sophisticated deuteration astrochemical network. Although the core has some magnetic/turbulent support, it collapses under gravity in about one freefall time, which marks the end of the simulations. Our fiducial model achieves relatively low $rm D_{frac}^{N_2H^+} sim 0.002$ during this time. We then investigate effects of initial ortho-para ratio of $rm H_2$ ($rm OPR^{H_2}$), temperature, cosmic ray (CR) ionization rate, CO and N-species depletion factors and prior PSC chemical evolution. We find that high CR ionization rates and high depletion factors allow the simulated $rm D_{frac}^{N_2H^+}$ and absolute abundances to match observational values within one freefall time. For $rm OPR^{H_2}$, while a lower initial value helps the growth of $rm D_{frac}^{N_2H^+}$, the spatial structure of deuteration is too widespread compared to observed systems. For an example model with elevated CR ionization rates and significant heavy element depletion, we then study the kinematic and dynamic properties of the core as traced by its $rm N_2D^+$ emission. The core, undergoing quite rapid collapse, exhibits disturbed kinematics in its average velocity map. Still, because of magnetic support, the core often appears kinematically sub-virial based on its $rm N_2D^+$ velocity dispersion.
The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associate d with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appear to be a smooth transition from the pre- to the proto-stellar phase. In particular, for proto-stellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا