ﻻ يوجد ملخص باللغة العربية
We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments ($lambda$ Orionis, Orion A, B, Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45-m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N$_2$H$^+$, c-C$_3$H$_2$) and deuterated molecules (e.g., N$_2$D$^+$, DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores ($>$1 kpc). For $lambda$ Orionis, Orion A, and B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.
We present the results of on-the-fly mapping observations of 44 fields containing 107 SCUBA-2 cores in the emission lines of molecules, N$_2$H$^+$, HC$_3$N, and CCS at 82$-$94 GHz using the Nobeyama 45-m telescope. This study aimed at investigating t
Similarity in shape between the initial mass function (IMF) and the core mass functions (CMFs) in star-forming regions prompts the idea that the IMF originates from the CMF through a self-similar core-to-star mass mapping process. To accurately deter
We present the first results of high-spectral resolution (0.023 km/s) N$_2$H$^+$ observations of dense gas dynamics at core scales (~0.01 pc) using the recently commissioned Argus instrument on the Green Bank Telescope (GBT). While the fitted linear
High levels of deuterium fractionation of $rm N_2H^+$ (i.e., $rm D_{frac}^{N_2H^+} gtrsim 0.1$) are often observed in pre-stellar cores (PSCs) and detection of $rm N_2D^+$ is a promising method to identify elusive massive PSCs. However, the physical
The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associate