ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface

55   0   0.0 ( 0 )
 نشر من قبل Theodoros Tsatsoulis
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive benchmark study of the adsorption energy of a single water molecule on the (001) LiH surface using periodic coupled cluster and quantum Monte Carlo theories. We benchmark and compare different implementations of quantum chemical wave function based theories in order to verify the reliability of the predicted adsorption energies and the employed approximations. Furthermore we compare the predicted adsorption energies to those obtained employing widely-used van der Waals density-functionals. Our findings show that quantum chemical approaches are becoming a robust and reliable tool for condensed phase electronic structure calculations, providing an additional tool that can also help in potentially improving currently available van der Waals density-functionals.



قيم البحث

اقرأ أيضاً

We present a variational MonteCarlo (VMC) and lattice regularized diffusion MonteCarlo (LRDMC) study of the binding energy and dispersion curve of the water dimer. As a variation ansatz we use the JAGP wave function, an implementation of the resonati ng valence bond (RVB) idea. Actually one the aim of the present work is to investigate how the bonding of two water molecules, as a prototype of the hydrogen-bonded complexes, could be described within an JAGP approach. Using a pseudopotential for the inert core of the Oxygen, with a full optimization of the variational parameters, we obtain at the VMC level a binding energy of -4.5(0.1) Kcal/mol, while LRDMC calculations gives -4.9(0.1) Kcal/mol (experiment 5 Kcal/Mol). The calculated dispersion curve reproduces both at the VMC and LRDMC level the miminum position and the curvature.The quality of the WF gives us the possibility to dissect the binding energy in different contributions by appropriately switching off determinantal and Jastrow terms in the JAGP: we estimate the dynamical contribution to the binding energy to be of the order of 1.4(0.2) Kcal/Mol whereas the covalent contribution about 1.0(0.2) Kcal/Mol. JAGP reveales thus a promising WF for describing systems where both dispersive and covalent forces play an important role.
Monte Carlo simulations using a hybrid quantum and classical mechanical potential were performed for crystal and amorphous-like HCl-water(n) clusters The subsystem composed by HCl and one water molecule was treated within Density Functional Theory, a nd a classical force field was used for the rest of the system. Simulations performed at 200 K suggest that the energetic feasibility of HCl dissociation strongly depends on its initial placement within the cluster. An important degree of ionization occurs only if HCl is incorporated into the surface. We observe that local melting does not play a crucial role in the ionization process.
DFT is a valuable tool for calculating adsorption energies toward designing materials for hydrogen storage. However, dispersion forces being absent from the theory, it remains unclear how the consideration of van der Waals (vdW) interactions affects such calculations. For the first time, we applied diffusion Monte Carlo (DMC) to evaluate the adsorption characteristics of a hydrogen molecule on a (5,5) armchair silicon-carbide nanotube (H$_2$-SiCNT). Within the framework of density functional theory (DFT), we also benchmarked various exchange-correlation functionals, including those recently developed for treating dispersion or vdW interactions. We found that the vdW-corrected DFT methods agree well with DMC, whereas the local (semilocal) functional significantly over (under)-binds. Furthermore, we fully optimized the H$_2$-SiCNT geometry within the DFT framework and investigated the correlation between structure and charge density. The vdW contribution to adsorption was found to be non-negligible at approximately 1 kcal/mol per hydrogen molecule, which amounts to 9-29 % of the ideal adsorption energy required for hydrogen storage applications.
66 - Sam Azadi , R. E. Cohen 2015
We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der W aals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the CCSD(T)/CBS limit is -2.65(2) kcal/mol [E. Miliordos et al, J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.
We show how accurate benchmark values of the surface formation energy of crystalline lithium hydride can be computed by the complementary techniques of quantum Monte Carlo (QMC) and wavefunction-based molecular quantum chemistry. To demonstrate the h igh accuracy of the QMC techniques, we present a detailed study of the energetics of the bulk LiH crystal, using both pseudopotential and all-electron approaches. We show that the equilibrium lattice parameter agrees with experiment to within 0.03 %, which is around the experimental uncertainty, and the cohesive energy agrees to within around 10 meV per formula unit. QMC in periodic slab geometry is used to compute the formation energy of the LiH (001) surface, and we show that the value can be accurately converged with respect to slab thickness and other technical parameters. The quantum chemistry calculations build on the recently developed hierarchical scheme for computing the correlation energy of a crystal to high precision. We show that the hierarchical scheme allows the accurate calculation of the surface formation energy, and we present results that are well converged with respect to basis set and with respect to the level of correlation treatment. The QMC and hierarchical results for the surface formation energy agree to within about 1 %.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا