ﻻ يوجد ملخص باللغة العربية
DFT is a valuable tool for calculating adsorption energies toward designing materials for hydrogen storage. However, dispersion forces being absent from the theory, it remains unclear how the consideration of van der Waals (vdW) interactions affects such calculations. For the first time, we applied diffusion Monte Carlo (DMC) to evaluate the adsorption characteristics of a hydrogen molecule on a (5,5) armchair silicon-carbide nanotube (H$_2$-SiCNT). Within the framework of density functional theory (DFT), we also benchmarked various exchange-correlation functionals, including those recently developed for treating dispersion or vdW interactions. We found that the vdW-corrected DFT methods agree well with DMC, whereas the local (semilocal) functional significantly over (under)-binds. Furthermore, we fully optimized the H$_2$-SiCNT geometry within the DFT framework and investigated the correlation between structure and charge density. The vdW contribution to adsorption was found to be non-negligible at approximately 1 kcal/mol per hydrogen molecule, which amounts to 9-29 % of the ideal adsorption energy required for hydrogen storage applications.
The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow an
The Mott insulator $beta$-EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ belongs to a class of charge transfer solids with highly-frustrated triangular lattice of $S=1/2$ molecular dimers and a quantum-spin-liquid ground state. Our experimental and ab initio theoretic
We present a critical overview comparing theoretical predictions and measurements of Van der Waals dispersion forces in media on the basis of the respective Hamaker constants. To quantify the agreement, we complement the reported experimental errors
The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energ
We present a variational MonteCarlo (VMC) and lattice regularized diffusion MonteCarlo (LRDMC) study of the binding energy and dispersion curve of the water dimer. As a variation ansatz we use the JAGP wave function, an implementation of the resonati