ﻻ يوجد ملخص باللغة العربية
We show how accurate benchmark values of the surface formation energy of crystalline lithium hydride can be computed by the complementary techniques of quantum Monte Carlo (QMC) and wavefunction-based molecular quantum chemistry. To demonstrate the high accuracy of the QMC techniques, we present a detailed study of the energetics of the bulk LiH crystal, using both pseudopotential and all-electron approaches. We show that the equilibrium lattice parameter agrees with experiment to within 0.03 %, which is around the experimental uncertainty, and the cohesive energy agrees to within around 10 meV per formula unit. QMC in periodic slab geometry is used to compute the formation energy of the LiH (001) surface, and we show that the value can be accurately converged with respect to slab thickness and other technical parameters. The quantum chemistry calculations build on the recently developed hierarchical scheme for computing the correlation energy of a crystal to high precision. We show that the hierarchical scheme allows the accurate calculation of the surface formation energy, and we present results that are well converged with respect to basis set and with respect to the level of correlation treatment. The QMC and hierarchical results for the surface formation energy agree to within about 1 %.
We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurat
Cubic hafnia (HfO$_2$) is of great interest for a number of applications in electronics because of its high dielectric constant. However, common defects in such applications degrade the properties of hafina. We have investigated the electronic proper
We have used diffusion Monte Carlo (DMC) calculations to study the structural properties of magnesium hydride (MgH$_2$), including the pressure-volume equation of state, the cohesive energy and the enthalpy of formation from magnesium bulk and hydrog
Density functional theory (DFT) is widely used in surface science, but gives poor accuracy for oxide surface processes, while high-level quantum chemistry methods are hard to apply without losing basis-set quality. We argue that quantum Monte Carlo t
We present a detailed study of the energetics of water clusters (H$_2$O)$_n$ with $n le 6$, comparing diffusion Monte Carlo (DMC) and approximate density functional theory (DFT) with well converged coupled-cluster benchmarks. We use the many-body dec