ﻻ يوجد ملخص باللغة العربية
Recently, we applied an $ab$ $initio$ method, the no-core shell model combined with the resonating group method, to the transfer reactions with light p-shell nuclei as targets and deuteron as the projectile. In particular, we studied the elastic scattering of deuterium on $^7$Li and the ${}^{7}$Li($d$,$p$)${}^{8}$Li transfer reaction starting from a realistic two-nucleon interaction. In this contribution, we review of our main results on the ${}^{7}$Li($d$,$p$)${}^{8}$Li transfer reaction, and we extend the study of the relevant reaction channels, by showing the dominant resonant phase shifts of the scattering matrix. We assess also the impact of the polarization effects of the deuteron below the breakup on the positive-parity resonant states in the reaction. For this purpose, we perform an analysis of the convergence trend of the phase and eigenphase shifts, with respect to the number of deuteron pseudostates included in the model space.
The relative importance of neutron transfer and breakup process in reaction around Coulomb barrier energies have been studied for the $^{7}$Li+$^{124}$Sn system. Coupled channel calculations have been performed to understand the one neutron stripping
The $^8$Li($n,gamma$)$^9$Li reaction plays an important role in several astrophysics scenarios. It cannot be measured directly and indirect experiments have so far provided only cross section limits. Theoretical predictions differ by an order of magn
The p( uc{11}{Li}, uc{9}{Li})t reaction has been studied for the first time at an incident energy of 3$A$ MeV delivered by the new ISAC-2 facility at TRIUMF. An active target detector MAYA, build at GANIL, was used for the measurement. The differenti
At the long-wavelength approximation, $E1$ transitions are forbidden between isospin-zero states. Hence $E1$ radiative capture is strongly hindered in reactions involving $N = Z$ nuclei but the $E1$ astrophysical $S$ factor may remain comparable to,
The cross section for the reaction $p+^6text{Li}toeta+^7text{Be}$ was measured at an excess energy of 11.28 MeV above threshold by detecting the recoiling $^7$Be nuclei. A dedicated set of focal plane detectors was built for the magnetic spectrograph