ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the $bm{p+^6}$Li$bm{toeta+^7}$Be reaction 11.3 MeV above threshold

211   0   0.0 ( 0 )
 نشر من قبل Hartmut Machner
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The cross section for the reaction $p+^6text{Li}toeta+^7text{Be}$ was measured at an excess energy of 11.28 MeV above threshold by detecting the recoiling $^7$Be nuclei. A dedicated set of focal plane detectors was built for the magnetic spectrograph Big Karl and was used for identification and four momentum measurement of the $^7$Be. A differential cross section of $frac{dsigma}{dOmega}=(0.69pm{0.20}text{(stat.)}pm 0.20text{(syst.)})text{nb/sr}$ for the ground state plus the 1/2$^-$ was measured. The result is compared to model calculations.



قيم البحث

اقرأ أيضاً

119 - N. Markov , K. Joo , V.D. Burkert 2019
The exclusive electroproduction process $ep rightarrow eppi^{0}$ was measured in the range of photon virtualities $Q^{2} = 0.4 - 1.0$~GeV$^{2}$ and the invariant mass range of the $ppi^{0}$ system of $W = 1.1 - 1.8$~GeV. These kinematics are covered in exclusive $pi^{0}$ electroproduction off the proton with nearly complete angular coverage in the $ppi^{0}$ center-of-mass system and with high statistical accuracy. Nearly 36000 cross section points were measured, and the structure functions $sigma_T+epsilonsigma_L$, $sigma_{LT}$, and $sigma_{TT}$, were extracted via fitting the $phi_{pi^{0}}$ dependence of the cross section. A Legendre polynomial expansion analysis demonstrates the sensitivity of our data to high-lying $N^*$ and $Delta^{*}$ resonances with $M~>~1.6$ GeV. As part of a broad effort to determine the electrocouplings of the $N^{*}$ and $Delta^{*}$ resonances using both single- and double-pion electroproduction, this dataset is crucial for the reliable extraction of the high-lying resonance electrocouplings from the combined isospin analysis of the $N pi$ and $pi^{+}pi^{-} p$ channels.
The quantification of isotopes content in materials is extremely important in many research and industrial fields. Accurate determination of boron concentration is very critical in semiconductor, superconductor and steel industry, in environmental an d medical applications as well as in nuclear and astrophysics research. The detection of B isotopes and of their ratio in synthetic and natural materials may be accomplished by gamma spectroscopy using the $^{10}$B(p,$alpha_1 gamma$)$^7$Be and $^{11}$B(p,$gamma$)$^{12}$C reactions at low proton energy. Here, the $^{10}$B(p,$alpha_1 gamma$)$^7$Be cross section is reported in the center of mass energy range 0.35 to 1.8 MeV. The $E_gamma$= 429 keV $gamma$ rays were detected at 45$^circ$ and 90$^circ$ using a NaI(Tl) and an HPGe detectors, respectively. In the presented energy range, previous cross sections data revealed discrepancies and normalisation issues. Existing data are compared to the new absolute measurement and discussed. The present data have been subtracted from a previous measurement of the total cross section to derive the contribution of the $alpha_0$ channel.
Presence of closed proton and/or neutron shells causes deviation from macroscopic properties of nuclei which are understood in terms of the liquid drop model. It is important to investigate experimentally the stabilizing effects of shell closure, if any, against fission. This work aims to investigate probable effects of proton shell ($Z = 82$) closure in the compound nucleus, in enhancing survival probability of the evaporation residues formed in heavy ion-induced fusion-fission reactions. Evaporation residue cross sections have been measured for the reactions $^{19}$F+$^{180}$Hf, $^{19}$F+$^{181}$Ta and $^{19}$F+$^{182}$W from $simeq9%$ below to $simeq42%$ above the Coulomb barrier, leading to formation of compound nuclei with same number of neutrons ($N = 118$) but different number of protons across $Z = 82$. Measured excitation functions have been compared with statistical model calculation, in which reduced dissipation coefficient is the only adjustable parameter. Evaporation residue cross section, normalized by capture cross section, is found to decrease gradually with increasing fissility of the compound nucleus. Measured evaporation residue cross sections require inclusion of nuclear viscosity in the model calculations. Reduced dissipation coefficient in the range of 1textendash3 $times$ $10^{21}$ s$^{-1}$ reproduces the data quite well. No abrupt enhancement of evaporation residue cross sections has been observed in the reaction forming compound nucleus with $Z = 82$. Thus, this work does not find enhanced stabilizing effects of $Z = 82$ shell closure against fission in the compound nucleus. One may attempt to measure cross sections of individual exit channels for further confirmation of our observation.
61 - R. Honda , M. Agnello , J. K. Ahn 2017
We searched for the bound state of the neutron-rich $Lambda$-hypernucleus ${}^{6}_{Lambda}$H, using the ${}^{6}$Li($pi^{-}, K^{+}$)X double charge-exchange reaction at a $pi^{-}$ beam momentum of 1.2 GeV/c at J-PARC. A total of $1.4 times 10^{12}$ $p i^{-}$ was driven onto a ${}^{6}$Li target of 3.5-g/$rm cm^2$ thickness. No event was observed below the bound threshold, i.e., the mass of ${}^{4}_{Lambda}$H + 2n, in the missing-mass spectrum of the ${}^{6}$Li($pi^{-}, K^{+}$)X reaction in the $2^{circ}$ < $theta_{pi K}$ < $20^{circ}$ angular range. Furthermore, no event was found up to 2.8 MeV/$c^2$ above the bound threshold. We obtained the the double-differential cross section spectra of the ${}^{6}$Li($pi^{-}, K^{+}$)X reaction in the angular range of $2^{circ}$ < $theta_{pi K}$ < $14^{circ}$. An upper limit of 0.56 nb/sr (90% C.L.) was obtained for the production cross section of the ${}^{6}_{Lambda}$H hypernucleus bound state. In addition, not only the bound state region, but also the $Lambda$ continuum region and part of the $Sigma^{-}$ quasi-free production region of the ${}^{6}$Li($pi^{-}, K^{+}$)X reaction, were obtained with high statistics. The present missing-mass spectrum will facilitate the investigation of the $Sigma^{-}$-nucleus optical potential for $Sigma^{-}$-${}^{5}$He through spectrum shape analysis.
An experimental study of the $K^-_{stop}Arightarrow Sigma^- p A$ reaction on $A=^6$Li, $^7$Li, $^9$Be, $^{13}$C and $^{16}$O $p$-shell nuclei is presented. The data were collected by the FINUDA spectrometer operating at the DA$Phi$NE $phi$-factory (L NF-INFN, Italy). Emission rates for the reaction in the mentioned nuclei are measured and compared with the few existing data. The spectra of several observables are discussed; indications of Quasi-Free absorptions by a $(np)$ pair embedded in the $A$ nucleus can be obtained from the study of the missing mass distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا