ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption

66   0   0.0 ( 0 )
 نشر من قبل Thangasamy Velusamy
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

UV absorption studies with FUSE have observed H2 molecular gas in translucent and diffuse clouds. Observations of the 158 micron [C II] fine structure line with Herschel also trace the same H2 molecular gas in emission. We present [C II] observations along 27 lines of sight (LOSs) towards target stars of which 25 have FUSE H2 UV absorption. We detect [C II] emission features in all but one target LOS. For three Target LOSs, which are close to the Galactic plane, we also present position-velocity maps of [C II] emission observed by HIFI in on-the-fly spectral line mapping. We use the velocity resolved [C II] spectra towards the target LOSs observed by FUSE to identify C II] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C II] spectral line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C II] intensities derive a mean thermal pressure in the range 6100 to 7700 K cm^-3 in diffuse H2 clouds. We discuss the thermal pressures and densities towards 14 targets, comparing them to results obtained using the UV absorption data for two other tracers CI and CO.



قيم البحث

اقرأ أيضاً

We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a funct ion of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this C+/H2 gas layer accounts for almost all of the `CO-dark molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ~0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low redshift spirals we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ~0.4. At redshifts 1<z<3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (<0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.
200 - Jer^ome Pety 2011
We show that the XCO factor, which converts the CO luminosity into the column density of molecular hydrogen has similar values for dense, fully molecular gas and for diffuse, partially molecular gas. We discuss the reasons of this coincidence and the consequences for the understanding of the interstellar medium.
We present the detection of excited fine-structure energy levels of singly-ionized silicon and neutral carbon associated with the proximate damped Lyman-$alpha$ system at $z_{rm abs}=2.811$ towards qso. This absorber has an apparent relative velocity that is inconsistent with the Hubble flow indicating motion along the line-of-sight towards the quasar, i.e., $z_{rm abs}>z_{rm em}$. We measure the metallicity of the system to be ${rm [Zn/H]}=-0.68pm 0.02$. Using the relative populations of the fine-structure levels of SiII and CI, as well as the populations of H$_2$ rotational levels, we constrain the physical conditions of the gas. We derive hydrogen number densities of $n_{rm H}=190^{+70}_{-50}$ cm$^{-3}$ and $260^{+30}_{-20}$ cm$^{-3}$ in two velocity components where both CI and H$_2$ are detected. Taking into account the kinetic temperature in each component, $sim 150$K, we infer high values of thermal pressure in the cold neutral medium probed by the observations. The strengths of the UV field in Draines unit are $I_{rm UV} = 10^{+5}_{-3}$ and $14^{+3}_{-3}$ in each of these two components, respectively. Such enhanced UV fluxes and thermal pressure compared to intervening DLAs are likely due to the proximity of the quasar. The typical size of the absorber is $sim 10^4$ a.u. Assuming the UV flux is dominated by the quasar, we constrain the distance between the quasar and the absorber to be $sim 150-200$ kpc. This favours a scenario where the absorption occurs in a companion galaxy located in the group where the quasar-host galaxy resides. This is in line with studies in emission that revealed the presence of several galaxies around the quasar.
This paper assesses the roles of the presence of warm H2, and the increased formation rate due to the ion-neutral drift. We performed ideal MHD simulations that include the heating and cooling of the multiphase ISM, and where we treat dynamically the formation of H2. In a post-processing step we compute the abundances of species at chemical equilibrium. We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low, but nevertheless higher than its equilibrium value, and where the gas temperature is high. We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude, up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities (vd). We find that the vd distribution peaks around 0.04 km s-1, and that high vd are too rare to have a significant statistical impact on the abundances of CH+. Compared to previous works, our multiphase simulations reduce the spread in vd, and our self-consistent treatment of the ionisation leads to much reduced vd. Nevertheless, our resolution study shows that this velocity distribution is not converged: the ion-neutral drift has a higher impact on CH+ at higher resolution. On the other hand, our ideal MHD simulations do not include ambipolar diffusion, which would yield lower drift velocities. Within these limitations, we conclude that warm H2 is a key ingredient in the efficient formation of CH+ and that the ambipolar diffusion has very little influence on the abundance of CH+, mainly due to the small drift velocities obtained. However, we point out that small-scale processes and other non-thermal processes not included in our MHD simulation may be of crucial importance, and higher resolution studies with better controlled dissipation processes are needed.
We present an analysis of Spitzer-IRS spectroscopic maps of the L1157 protostellar outflow in the H2 pure-rotational lines from S(0) to S(7). The aim of this work is to derive the physical conditions pertaining to the warm molecular gas and study the ir variations within the flow. The mid-IR H2 emission follows the morphology of the precessing flow, with peaks correlated with individual CO clumps and H2 2.12{mu}m ro-vibrational emission. More diffuse emission delineating the CO cavities is detected only in the low-laying transitions, with J(lower) less or equal to 2. The H2 line images have been used to construct 2D maps of N(H2), H2 ortho-to-para ratio and temperature spectral index beta, in the assumption of a gas temperature stratification where the H2 column density varies as T^(beta). Variations of these parameters are observed along the flow. In particular, the ortho-to-para ratio ranges from 0.6 to 2.8, highlighting the presence of regions subject to recent shocks where the ortho-to-para ratio has not had time yet to reach the equilibrium value. Near-IR spectroscopic data on ro-vibrational H2 emission have been combined with the mid-IR data and used to derive additional shock parameters in the brightest blue- and red-shifted emission knots. A high abundance of atomic hydrogen (H/H2 about 0.1-0.3) is implied by the observed H2 column densities, assuming n(H2) values as derived by independent SiO observations. The presence of a high fraction of atomic hydrogen, indicates that a partially-dissociative shock component should be considered for the H2 excitation in these localized regions. However, planar shock models, either of C- or J-type, are not able to consistently reproduce all the physical parameters derived from our analysis of the H2 emission. Globally, H2 emission contributes to about 50% of the total shock radiated energy in the L1157 outflow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا