ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of CH+ in diffuse molecular clouds warm H2 and ion-neutral drift

83   0   0.0 ( 0 )
 نشر من قبل Valeska Valdivia
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper assesses the roles of the presence of warm H2, and the increased formation rate due to the ion-neutral drift. We performed ideal MHD simulations that include the heating and cooling of the multiphase ISM, and where we treat dynamically the formation of H2. In a post-processing step we compute the abundances of species at chemical equilibrium. We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low, but nevertheless higher than its equilibrium value, and where the gas temperature is high. We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude, up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities (vd). We find that the vd distribution peaks around 0.04 km s-1, and that high vd are too rare to have a significant statistical impact on the abundances of CH+. Compared to previous works, our multiphase simulations reduce the spread in vd, and our self-consistent treatment of the ionisation leads to much reduced vd. Nevertheless, our resolution study shows that this velocity distribution is not converged: the ion-neutral drift has a higher impact on CH+ at higher resolution. On the other hand, our ideal MHD simulations do not include ambipolar diffusion, which would yield lower drift velocities. Within these limitations, we conclude that warm H2 is a key ingredient in the efficient formation of CH+ and that the ambipolar diffusion has very little influence on the abundance of CH+, mainly due to the small drift velocities obtained. However, we point out that small-scale processes and other non-thermal processes not included in our MHD simulation may be of crucial importance, and higher resolution studies with better controlled dissipation processes are needed.



قيم البحث

اقرأ أيضاً

Based on the analysis of available published data and archival data along 24 sightlines (5 of which are new) we derive more accurate estimates of the column densities of OH and CH towards diffuse/translucent clouds and revisit the typically observed correlation between the abundances of these species. The increase in the sample size was possible because of the equivalence of the column densities of CH derived from a combination of the transitions at 3137 & 3143 Angstrom, and a combination of transitions at 3886 & 3890 Angstrom, which we have demonstrated here. We find that with the exception of four diffuse clouds, the entire source sample shows a clear correlation between the column densities of OH and CH similar to previous observations. The analysis presented also verifies the theoretically predicted oscillator strengths of the OH A--X (3078 & 3082 Angstrom), CH B--X (3886 & 3890 Angstrom) and C--X (3137 & 3143 Angstrom) transitions. We estimate N(H) and N(H2) from the observed E(B-V) and N(CH) respectively. The N(OH)/N(CH) ratio is not correlated with the molecular fraction of hydrogen in the diffuse/translucent clouds. We show that with the exception of HD 34078 for all the clouds the observed column density ratios of CH and OH can be reproduced by simple chemical models which include gas-grain interaction and gas-phase chemistry. The enhanced N(OH)/N(CH) ratio seen towards the 3 new sightlines can be reproduced primarily by considering different cosmic ray ionization rates.
212 - A.J. Porras 2013
Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio ), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds.
124 - Haoyu Fan 2017
We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form [$f$(H$_2$)], with comparisons to the corresponding behavior of various known atom ic and molecular species. The equivalent widths of the five normal DIBs ($lambdalambda$5780.5, 5797.1, 6196.0, 6283.8, and 6613.6), normalized to $E(B-V)$, show a Lambda-shaped behavior: they increase at low $f$(H$_2$), peak at $f$(H$_2$) ~ 0.3, and then decrease. The similarly normalized column densities of Ca, Ca$^+$, Ti$^+$, and CH$^+$ also decline for $f$(H$_2$) > 0.3. In contrast, the normalized column densities of Na, K, CH, CN, and CO increase monotonically with $f$(H$_2$), and the trends exhibited by the three C$_2$ DIBs ($lambdalambda$4726.8, 4963.9, and 4984.8) lie between those two general behaviors. These trends with $f$(H$_2$) are accompanied by cosmic scatter, the dispersion at any given $f$(H$_2$) being significantly larger than the individual errors of measurement. The Lambda-shaped trends suggest the balance between creation and destruction of the DIB carriers differs dramatically between diffuse atomic and diffuse molecular clouds; additional processes besides ionization and shielding are needed to explain those observed trends. Except for several special cases, the highest $W$(5780)/$W$(5797) ratios, characterizing the so-called sigma-zeta effect, occur only at $f$(H$_2$) < 0.2. We propose a sequence of DIBs based on trends in their pair-wise strength ratios with increasing $f$(H$_2$). In order of increasing environmental density, we find the $lambda$6283.8 and $lambda$5780.5 DIBs, the $lambda$6196.0 DIB, the $lambda$6613.6 DIB, the $lambda$5797.1 DIB, and the C$_2$ DIBs.
We present an analysis of 55 central galaxies in clusters and groups with molecular gas masses and star formation rates lying between $10^{8}-10^{11} M_{odot}$ and $0.5-270$ $M_{odot} yr^{-1}$, respectively. We have used Chandra observations to deriv e profiles of total mass and various thermodynamic variables. Molecular gas is detected only when the central cooling time or entropy index of the hot atmosphere falls below $sim$1 Gyr or $sim$35 keV cm$^2$, respectively, at a (resolved) radius of 10 kpc. This indicates that the molecular gas condensed from hot atmospheres surrounding the central galaxies. The depletion timescale of molecular gas due to star formation approaches 1 Gyr in most systems. Yet ALMA images of roughly a half dozen systems drawn from this sample suggest the molecular gas formed recently. We explore the origins of thermally unstable cooling by evaluating whether molecular gas becomes prevalent when the minimum of the cooling to free-fall time ratio ($t_{rm cool}/t_{rm ff}$) falls below $sim10$. We find: 1) molecular gas-rich systems instead lie between $10 < min(t_{rm cool}/t_{rm ff}) < 25$, where $t_{rm cool}/t_{rm ff}=25$ corresponds approximately to cooling time and entropy thresholds $t_{rm cool} lesssim 1$ Gyr and 35 keV~cm$^2$, respectively, 2) $min(t_{rm cool}/t_{rm ff}$) is uncorrelated with molecular gas mass and jet power, and 3) the narrow range $10 < min(t_{rm cool}/t_{rm ff}) < 25$ can be explained by an observational selection effect. These results and the absence of isentropic cores in cluster atmospheres are in tension with precipitation models, particularly those that assume thermal instability ensues from linear density perturbations in hot atmospheres. Some and possibly all of the molecular gas may instead have condensed from atmospheric gas lifted outward either by buoyantly-rising X-ray bubbles or merger-induced gas motions.
The chemistry of the diffuse interstellar medium is driven by the combined influences of cosmic rays, ultraviolet (UV) radiation, and turbulence. Previously detected at the outer edges of photodissociation regions (PDRs) and formed from the reaction of C+ and OH, CO+ is the main chemical precursor of HCO+ and CO in a thermal, cosmic-ray, and UV-driven chemistry. Our aim was to test whether the thermal cosmic-ray and UV-driven chemistry is producing CO in diffuse interstellar molecular gas through the intermediate formation of CO+ We searched for CO+ absorption with the Atacama Large Millimeter Array (ALMA) toward two quasars with known Galactic foreground absorption from diffuse interstellar gas, J1717-3342 and J1744-3116, targeting the two strongest hyperfine components of the J=2-1 transition near 236 GHz. We could not detect CO+ but obtained sensitive upper limits toward both targets. The derived upper limits on the CO+ column densities represent about 4% of the HCO+ column densities. The corresponding upper limit on the CO+ abundance relative to H2 is <1.2 x 10^{-10}. The non-detection of CO+ confirms that HCO+ is mainly produced in the reaction between oxygen and carbon hydrides, CH2+ or CH3+ , induced by suprathermal processes, while CO+ and HOC+ result from reactions of C+ with OH and H2O. The densities required to form CO molecules at low extinction are consistent with this scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا