ﻻ يوجد ملخص باللغة العربية
In this short note, based on the talk given at the 3rd Conference of the Polish Society on Relativity, I present the basic points of our recent paper Symmetries of quantum spacetime in three dimensions, stressing their physical meaning, and avoiding technical details.
We propose that finite cutoff regions of holographic spacetimes represent quantum circuits that map between boundary states at different times and Wilsonian cutoffs, and that the complexity of those quantum circuits is given by the gravitational acti
There is a growing number of physical models, like point particle(s) in 2+1 gravity or Doubly Special Relativity, in which the space of momenta is curved, de Sitter space. We show that for such models the algebra of space-time symmetries possesses a
The classical $r$-matrix for $N=1$ superPoincar{e} algebra, given by Lukierski, Nowicki and Sobczyk is used to describe the graded Poisson structure on the $N=1$ Poincar{e} supergroup. The standard correspondence principle between the even (odd) Pois
Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in thi
We discuss the obstruction to the construction of a multiparticle field theory on a $kappa$-Minkowski noncommutative spacetime: the existence of multilocal functions which respect the deformed symmetries of the problem. This construction is only poss