ﻻ يوجد ملخص باللغة العربية
There is a growing number of physical models, like point particle(s) in 2+1 gravity or Doubly Special Relativity, in which the space of momenta is curved, de Sitter space. We show that for such models the algebra of space-time symmetries possesses a natural Hopf algebra structure. It turns out that this algebra is just the quantum $kappa$-Poincare algebra.
In this note we study a massive IIA supergravity theory obtained in hep-th/9707139 by compactification of M-theory. We point out that de Sitter space in arbitrary dimensions arises naturally as the vacuum of this theory. This explicitly shows how de
We consider a superextension of the extended Jordanian twist, describing nonstandard quantization of anti-de-Sitter ($AdS$) superalgebra $osp(1|4)$ in the form of Hopf superalgebra. The super-Jordanian twisting function and corresponding basic coprod
It is well-known that de Sitter Lie algebra $mathfrak{o}(1,4)$ contrary to anti-de Sitter one $mathfrak{o}(2,3)$ does not have a standard $mathbb{Z}_2$-graded superextension. We show here that the Lie algebra $mathfrak{o}(1,4)$ has a superextension b
We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in elliptic de Sitter space dS_4/Z_2, obtained by identifying antipodal points in dS_4. We discuss
Maldacena has shown that the wavefunction of the universe in de Sitter space can be viewed as the partition function of a conformal field theory. In this paper, we investigate this approach to the dS/CFT correspondence in further detail. We emphasize