ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Input Design for Affine Model Discrimination with Applications in Intention-Aware Vehicles

79   0   0.0 ( 0 )
 نشر من قبل Farshad Harirchi
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers the optimal design of input signals for the purpose of discriminating among a finite number of affine models with uncontrolled inputs and noise. Each affine model represents a different system operating mode, corresponding to unobserved intents of other drivers or robots, or to fault types or attack strategies, etc. The input design problem aims to find optimal separating/discriminating (controlled) inputs such that the output trajectories of all the affine models are guaranteed to be distinguishable from each other, despite uncertainty in the initial condition and uncontrolled inputs as well as the presence of process and measurement noise. We propose a novel formulation to solve this problem, with an emphasis on guarantees for model discrimination and optimality, in contrast to a previously proposed conservative formulation using robust optimization. This new formulation can be recast as a bilevel optimization problem and further reformulated as a mixed-integer linear program (MILP). Moreover, our fairly general problem setting allows the incorporation of objectives and/or responsibilities among rational agents. For instance, each driver has to obey traffic rules, while simultaneously optimizing for safety, comfort and energy efficiency. Finally, we demonstrate the effectiveness of our approach for identifying the intention of other vehicles in several driving scenarios.



قيم البحث

اقرأ أيضاً

A model-based optimal experiment design (OED) of nonlinear systems is studied. OED represents a methodology for optimizing the geometry of the parametric joint-confidence regions (CRs), which are obtained in an a posteriori analysis of the least-squa res parameter estimates. The optimal design is achieved by using the available (experimental) degrees of freedom such that more informative measurements are obtained. Unlike the commonly used approaches, which base the OED procedure upon the linearized CRs, we explore a path where we explicitly consider the exact CRs in the OED framework. We use a methodology for a finite parametrization of the exact CRs within the OED problem and we introduce a novel approximation technique of the exact CRs using inner- and outer-approximating ellipsoids as a computationally less demanding alternative. The employed techniques give the OED problem as a finite-dimensional mathematical program of bilevel nature. We use two small-scale illustrative case studies to study various OED criteria and compare the resulting optimal designs with the commonly used linearization-based approach. We also assess the performance of two simple heuristic numerical schemes for bilevel optimization within the studied problems.
We propose a reachability approach for infinite and finite horizon multi-objective optimization problems for low-thrust spacecraft trajectory design. The main advantage of the proposed method is that the Pareto front can be efficiently constructed fr om the zero level set of the solution to a Hamilton-Jacobi-Bellman equation. We demonstrate the proposed method by applying it to a low-thrust spacecraft trajectory design problem. By deriving the analytic expression for the Hamiltonian and the optimal control policy, we are able to efficiently compute the backward reachable set and reconstruct the optimal trajectories. Furthermore, we show that any reconstructed trajectory will be guaranteed to be weakly Pareto optimal. The proposed method can be used as a benchmark for future research of applying reachability analysis to low-thrust spacecraft trajectory design.
This paper proposes a tractable family of remainder-form mixed-monotone decomposition functions that are useful for over-approximating the image set of nonlinear mappings in reachability and estimation problems. In particular, our approach applies to a new class of nonsmooth nonlinear systems that we call either-sided locally Lipschitz (ELLC) systems, which we show to be a superset of locally Lipschitz continuous systems, thus expanding the set of systems that are formally known to be mixed-monotone. In addition, we derive lower and upper bounds for the over-approximation error and show that the lower bound is achievable with our proposed approach. Moreover, we develop a set inversion algorithm that along with the proposed decomposition functions, can be used for constrained reachability analysis and interval observer design for continuous and discrete-time systems with bounded noise.
This article considers the stochastic optimal control of discrete-time linear systems subject to (possibly) unbounded stochastic disturbances, hard constraints on the manipulated variables, and joint chance constraints on the states. A tractable conv ex second-order cone program (SOCP) is derived for calculating the receding-horizon control law at each time step. Feedback is incorporated during prediction by parametrizing the control law as an affine function of the disturbances. Hard input constraints are guaranteed by saturating the disturbances that appear in the control law parametrization. The joint state chance constraints are conservatively approximated as a collection of individual chance constraints that are subsequently relaxed via the Cantelli-Chebyshev inequality. Feasibility of the SOCP is guaranteed by softening the approximated chance constraints using the exact penalty function method. Closed-loop stability in a stochastic sense is established by establishing that the states satisfy a geometric drift condition outside of a compact set such that their variance is bounded at all times. The SMPC approach is demonstrated using a continuous acetone-butanol-ethanol fermentation process, which is used for production of high-value-added drop-in biofuels.
We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) in road intersections. For control purposes, we build upon a fully distributed m odel predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which aims to solve a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization and the estimation of joint collision points with other agents. Moreover, we come up with a proprietary communication protocol to exchange trajectories with other agents. Experimental tests reveal the efficacy of proposed control system architecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا