ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments

104   0   0.0 ( 0 )
 نشر من قبل Alexander Katriniok
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) in road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which aims to solve a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization and the estimation of joint collision points with other agents. Moreover, we come up with a proprietary communication protocol to exchange trajectories with other agents. Experimental tests reveal the efficacy of proposed control system architecture.

قيم البحث

اقرأ أيضاً

114 - Christoph Mark , Steven Liu 2021
In this paper, we propose a chance constrained stochastic model predictive control scheme for reference tracking of distributed linear time-invariant systems with additive stochastic uncertainty. The chance constraints are reformulated analytically b ased on mean-variance information, where we design suitable Probabilistic Reachable Sets for constraint tightening. Furthermore, the chance constraints are proven to be satisfied in closed-loop operation. The design of an invariant set for tracking complements the controller and ensures convergence to arbitrary admissible reference points, while a conditional initialization scheme provides the fundamental property of recursive feasibility. The paper closes with a numerical example, highlighting the convergence to changing output references and empirical constraint satisfaction.
Connected and automated vehicles have shown great potential in improving traffic mobility and reducing emissions, especially at unsignalized intersections. Previous research has shown that vehicle passing order is the key influencing factor in improv ing intersection traffic mobility. In this paper, we propose a graph-based cooperation method to formalize the conflict-free scheduling problem at an unsignalized intersection. Based on graphical analysis, a vehicles trajectory conflict relationship is modeled as a conflict directed graph and a coexisting undirected graph. Then, two graph-based methods are proposed to find the vehicle passing order. The first is an improved depth-first spanning tree algorithm, which aims to find the local optimal passing order vehicle by vehicle. The other novel method is a minimum clique cover algorithm, which identifies the global optimal solution. Finally, a distributed control framework and communication topology are presented to realize the conflict-free cooperation of vehicles. Extensive numerical simulations are conducted for various numbers of vehicles and traffic volumes, and the simulation results prove the effectiveness of the proposed algorithms.
In this study, we propose a rotation-based connected automated vehicle (CAV) distributed cooperative control strategy for an on-ramp merging scenario. By assuming the mainline and ramp line are straight, we firstly design a virtual rotation approach that transfers the merging problem to a virtual car following (CF) problem to reduce the complexity and dimension of the cooperative CAVs merging control. Based on this concept, a multiple-predecessor virtual CF model and a unidirectional multi-leader communication topology are developed to determine the longitudinal behavior of each CAV. Specifically, we exploit a distributed feedback and feedforward longitudinal controller in preparation for actively generating gaps for merging CAVs, reducing the voids caused by merging, and ensuring safety and traffic efficiency during the process. To ensure the disturbance attenuation property of this system, practical string stability is mathematically proved for the virtual CF controllers to prohibit the traffic oscillation amplification through the traffic stream. Moreover, as a provision for extending the virtual CF application scenarios of any curvy ramp geometry, we utilize a curvilinear coordinate to model the two-dimensional merging control, and further design a local lateral controller based on an extended linear-quadratic regulator to regulate the position deviation and angular deviation of the lane centerlines. For the purpose of systematically evaluating the control performance of the proposed methods, numerical simulation experiments are conducted. As the results indicate, the proposed controllers can actively reduce the void and meanwhile guarantee the damping of traffic oscillations in the merging control area.
Connected and Automated Hybrid Electric Vehicles have the potential to reduce fuel consumption and travel time in real-world driving conditions. The eco-driving problem seeks to design optimal speed and power usage profiles based upon look-ahead info rmation from connectivity and advanced mapping features. Recently, Deep Reinforcement Learning (DRL) has been applied to the eco-driving problem. While the previous studies synthesize simulators and model-free DRL to reduce online computation, this work proposes a Safe Off-policy Model-Based Reinforcement Learning algorithm for the eco-driving problem. The advantages over the existing literature are three-fold. First, the combination of off-policy learning and the use of a physics-based model improves the sample efficiency. Second, the training does not require any extrinsic rewarding mechanism for constraint satisfaction. Third, the feasibility of trajectory is guaranteed by using a safe set approximated by deep generative models. The performance of the proposed method is benchmarked against a baseline controller representing human drivers, a previously designed model-free DRL strategy, and the wait-and-see optimal solution. In simulation, the proposed algorithm leads to a policy with a higher average speed and a better fuel economy compared to the model-free agent. Compared to the baseline controller, the learned strategy reduces the fuel consumption by more than 21% while keeping the average speed comparable.
In this paper, we address the much-anticipated deployment of connected and automated vehicles (CAVs) in society by modeling and analyzing the social-mobility dilemma in a game-theoretic approach. We formulate this dilemma as a normal-form game of pla yers making a binary decision: whether to travel with a CAV (CAV travel) or not (non-CAV travel) and by constructing an intuitive payoff function inspired by the socially beneficial outcomes of a mobility system consisting of CAVs. We show that the game is equivalent to the Prisoners dilemma, which implies that the rational collective decision is the opposite of the socially optimum. We present two different solutions to tackle this phenomenon: one with a preference structure and the other with institutional arrangements. In the first approach, we implement a social mechanism that incentivizes players to non-CAV travel and derive a lower bound on the players that ensures an equilibrium of non-CAV travel. In the second approach, we investigate the possibility of players bargaining to create an institution that enforces non-CAV travel and show that as the number of players increases, the incentive ratio of non-CAV travel over CAV travel tends to zero. We conclude by showcasing the last result with a numerical study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا