ﻻ يوجد ملخص باللغة العربية
A fundamental question in the study of chemical reactions is how reactions proceed at a collision energy close to absolute zero. This question is no longer hypothetical: quantum degenerate gases of atoms and molecules can now be created at temperatures lower than a few tens of nanoKelvin. In this work we consider the benchmark ultracold reaction between, the most-celebrated ultracold molecule, KRb and K. For the first time we map out an accurate ab initio ground state potential energy surface of the KRbK complex in full dimensionality and report numerically exact quantum-mechanical reaction dynamics. The distribution of rotationally resolved rates is shown to be Poissonian. An analysis of the hyperspherical adiabatic potential curves explains this statistical character revealing a chaotic distribution for the short-range collision complex that plays a key role in governing the reaction outcome. We compare this with a lighter system with a smaller density of states (here the LiYbLi trimer) which displays random, and not chaotic, behavior.
We investigate the ultracold reaction dynamics of magnetically trapped NH($X ^3Sigma^-$) radicals using rigorous quantum scattering calculations involving three coupled potential energy surfaces. We find that the reactive NH + NH cross section is dri
We investigate theoretically the long-range electrostatic interactions between a ground-state homonuclear alkali-metal dimer and an excited alkali-metal atom taking into account its fine-structure. The interaction involves the combination of first-or
A first principles study of the dynamics of $^6$Li($^{2}$S) + $^6$Li$^{174}$Yb($^2Sigma^+$)$ to ^6$Li$_2(^1Sigma^+$) + $^{174}$Yb($^1$S) reaction is presented at cold and ultracold temperatures. The computations involve determination and analytic fit
We calculate the parameters of the recently-derived many-channel Hubbard model that is predicted to describe ultracold nonreactive molecules in an optical lattice, going beyond the approximations used in Doc{c}aj textit{et al.}~[Phys. Rev. Lett. text
We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimenta