ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum reactive scattering of ultracold NH($X,^3Sigma^-$) radicals in a magnetic trap

69   0   0.0 ( 0 )
 نشر من قبل Liesbeth Janssen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the ultracold reaction dynamics of magnetically trapped NH($X ^3Sigma^-$) radicals using rigorous quantum scattering calculations involving three coupled potential energy surfaces. We find that the reactive NH + NH cross section is driven by a short-ranged collisional mechanism, and its magnitude is only weakly dependent on magnetic field strength. Unlike most ultracold reactions observed so far, the NH + NH scattering dynamics is non-universal. Our results indicate that chemical reactions can cause more trap loss than spin-inelastic NH + NH collisions, making molecular evaporative cooling more difficult than previously anticipated.

قيم البحث

اقرأ أيضاً

We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for wh ich the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important textit{below} a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.
Elastic and spin-changing inelastic collision cross sections are presented for cold and ultracold magnetically trapped NH. The cross sections are obtained from coupled-channel scattering calculations as a function of energy and magnetic field. We spe cifically investigate the influence of the intramolecular spin-spin, spin-rotation, and intermolecular magnetic dipole coupling on the collision dynamics. It is shown that $^{15}$NH is a very suitable candidate for evaporative cooling experiments. The dominant trap-loss mechanism in the ultracold regime originates from the intermolecular dipolar coupling term. At higher energies and fields, intramolecular spin-spin coupling becomes increasingly important. Our qualitative results and conclusions are fairly independent of the exact form of the potential and of the size of the channel basis set.
A fundamental question in the study of chemical reactions is how reactions proceed at a collision energy close to absolute zero. This question is no longer hypothetical: quantum degenerate gases of atoms and molecules can now be created at temperatur es lower than a few tens of nanoKelvin. In this work we consider the benchmark ultracold reaction between, the most-celebrated ultracold molecule, KRb and K. For the first time we map out an accurate ab initio ground state potential energy surface of the KRbK complex in full dimensionality and report numerically exact quantum-mechanical reaction dynamics. The distribution of rotationally resolved rates is shown to be Poissonian. An analysis of the hyperspherical adiabatic potential curves explains this statistical character revealing a chaotic distribution for the short-range collision complex that plays a key role in governing the reaction outcome. We compare this with a lighter system with a smaller density of states (here the LiYbLi trimer) which displays random, and not chaotic, behavior.
We present an experimental and theoretical study of atom-molecule collisions in a mixture of cold, trapped atomic nitrogen and NH molecules at a temperature of $sim 600$~mK. We measure a small N+NH trap loss rate coefficient of $k^{(mathrm{N+NH})}_ma thrm{loss} = 8(4) times 10^{-13}$~cm$^{3}$s$^{-1}$. Accurate quantum scattering calculations based on {it ab initio} interaction potentials are in agreement with experiment and indicate the magnetic dipole interaction to be the dominant loss mechanism. Our theory further indicates the ratio of N+NH elastic to inelastic collisions remains large ($>100$) into the mK regime.
The absolute density of SD radicals in a supersonic jet has been measured down to $(1.1pm0.1)times10^5$ cm$^{-3}$ in a modestly specified apparatus that uses a cross-correlated combination of cavity ring-down and laser-induced fluorescence detection. Such a density corresponds to $215pm21$ molecules in the probe volume at any given time. The minimum detectable absorption coefficient was quantum-noise-limited and measured to be $(7.9pm0.6)times10^{-11}$ cm$^{-1}$, in 200 s of acquisition time, corresponding to a noise-equivalent absorption sensitivity for the apparatus of $(1.6pm0.1)times10^{-9}$ cm$^{-1}$ Hz$^{-1/2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا