ترغب بنشر مسار تعليمي؟ اضغط هنا

Face flips in origami tessellations

392   0   0.0 ( 0 )
 نشر من قبل Thomas Hull
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a flat-foldable origami crease pattern $G=(V,E)$ (a straight-line drawing of a planar graph on a region of the plane) with a mountain-valley (MV) assignment $mu:Eto{-1,1}$ indicating which creases in $E$ bend convexly (mountain) or concavely (valley), we may emph{flip} a face $F$ of $G$ to create a new MV assignment $mu_F$ which equals $mu$ except for all creases $e$ bordering $F$, where we have $mu_F(e)=-mu(e)$. In this paper we explore the configuration space of face flips for a variety of crease patterns $G$ that are tilings of the plane, proving examples where $mu_F$ results in a MV assignment that is either never, sometimes, or always flat-foldable for various choices of $F$. We also consider the problem of finding, given two foldable MV assignments $mu_1$ and $mu_2$ of a given crease pattern $G$, a minimal sequence of face flips to turn $mu_1$ into $mu_2$. We find polynomial-time algorithms for this in the cases where $G$ is either a square grid or the Miura-ori, and show that this problem is NP-hard in the case where $G$ is the triangle lattice.



قيم البحث

اقرأ أيضاً

For over twenty years, the term cosmic web has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the c osmic web and structural-engineering or textile spiderwebs is even deeper than previously known, and extends to origami tessellations as well. Here we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.
Using a mathematical model for self-foldability of rigid origami, we determine which monohedral quadrilateral tilings of the plane are uniquely self-foldable. In particular, the Miura-ori and Chicken Wire patterns are not self-foldable under our defi nition, but such tilings that are rotationally-symmetric about the midpoints of the tile are uniquely self-foldable.
Inspired by the allure of additive fabrication, we pose the problem of origami design from a new perspective: how can we grow a folded surface in three dimensions from a seed so that it is guaranteed to be isometric to the plane? We solve this proble m in two steps: by first identifying the geometric conditions for the compatible completion of two separate folds into a single developable four-fold vertex, and then showing how this foundation allows us to grow a geometrically compatible front at the boundary of a given folded seed. This yields a complete marching, or additive, algorithm for the inverse design of the complete space of developable quad origami patterns that can be folded from flat sheets. We illustrate the flexibility of our approach by growing ordered, disordered, straight and curved folded origami and fitting surfaces of given curvature with folded approximants. Overall, our simple shift in perspective from a global search to a local rule has the potential to transform origami-based meta-structure design.
155 - Zipeng Ye , Ran Yi , Minjing Yu 2019
Nowadays, big data of digital media (including images, videos and 3D graphical models) are frequently modeled as low-dimensional manifold meshes embedded in a high-dimensional feature space. In this paper, we summarized our recent work on geodesic ce ntroidal Voronoi tessellations(GCVTs), which are intrinsic geometric structures on manifold meshes. We show that GCVT can find a widely range of interesting applications in computer vision and graphics, due to the efficiency of search, location and indexing inherent in these intrinsic geometric structures. Then we present the challenging issues of how to build the combinatorial structures of GCVTs and establish their time and space complexities, including both theoretical and algorithmic results.
97 - Mark Neyrinck 2018
The cosmic web (the arrangement of matter in the universe), spiders webs, and origami tessellations are linked by their geometry (specifically, of sectional-Voronoi tessellations). This motivates origami and textile artistic representations of the co smic web. It also relates to the scientific insights origami can bring to the cosmic web; we show results of some cosmological computer simulations, with some origami-tessellation properties. We also adapt software developed for cosmic-web research to provide an interactive tool for general origami-tessellation design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا