ترغب بنشر مسار تعليمي؟ اضغط هنا

The Wolf-Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class

171   0   0.0 ( 0 )
 نشر من قبل Rainer Hainich
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods: For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results: We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12% of our sample are more luminous than 10^6 Lsun and contain a significant amount of hydrogen, 88% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/Lsun) = 5.3...5.8. Conclusions: While the few extremely luminous stars (log (L/Lsun) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/Lsun) = 5.3...5.8, these stars originate from initial masses between 20 and 40 Msun. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to subphotospheric inflation.



قيم البحث

اقرأ أيضاً

124 - R. Hainich , D. Pasemann , H. Todt 2015
Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the de gree of the wind mass-loss depends on the initial metallicity of WR stars. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10^5.5 to 10^6.1 Lsun. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past.
Surveys of Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) have yielded a fairly complete catalog of 154 known stars. We have conducted a comprehensive, multiwavelength study of the interstellar/circumstellar environments of WR stars, using the Magellanic Cloud Emission Line Survey (MCELS) images in the H$alpha$, [O III], and [S II] lines; Spitzer Space Telescope 8 and 24 $mu$m images; Blanco 4m Telescope H$alpha$ CCD images; and Australian Telescope Compact Array (ATCA) + Parkes Telescope H I data cube of the LMC. We have also examined whether the WR stars are in OB associations, classified the H II environments of WR stars, and used this information to qualitatively assess the WR stars evolutionary stages. The 30 Dor giant H II region has active star formation and hosts young massive clusters, thus we have made statistical analyses for 30 Dor and the rest of the LMC both separately and altogether. Due to the presence of massive young clusters, the WR population in 30 Dor is quite different from that from elsewhere in the LMC. We find small bubbles ($<$50 pc diameter) around $sim$12% of WR stars in the LMC, most of which are WN stars and not in OB associations. The scarcity of small WR bubbles is discussed. Spectroscopic analyses of abundances are needed to determine whether the small WR bubbles contain interstellar medium or circumstellar medium. Implications of the statistics of interstellar environments and OB associations around WR stars are discussed. Multiwavelength images of each LMC WR star are presented.
Mid-infrared photometry of the Wolf-Rayet star HD 38030 in the Large Magellanic Cloud from the NEOWISE-R mission show it to have undergone a dust-formation episode in 2018 and the dust to have cooled in 2019-20. New spectroscopy with the MagE spectro graph on the Magellan I Baade Telescope in 2019 and 2020 show absorption lines attributable to a companion of type near O9.7III-IV. We found a significant shift in the radial velocity of the C IV 5801-12 blend compared with the RVs measured in 1984 and 1993. The results combine to suggest that HD 38030 is a colliding-wind binary having short-lived dust formation episodes, like the Galactic systems WR 140 and WR 19, but at intervals in excess of 20 yr.
233 - Wei Zhang , Helge Todt , Hong Wu 2020
We report the discovery of a new transition type Wolf-Rayet (WR) WN/C star in the Galaxy. According to its coordinates (R.A., Dec)J2000 = 18h51m39.7s, -05d34m51.1s, and the distance (7.11 kpc away from Earth) inferred from the second Gaia, data relea se, its found that WR 121-16 is located in the Far 3 kpc Arm, and it is 3.75 kpc away from the Galactic Center. The optical spectra obtained by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and the 2.16 m telescope, both located at the Xinglong Observatory in China, indicate that this is a WR star of the transitional WN7o/WC subtype. A current stellar mass of about 7.1 M_solar, a mass-loss rate of M_dot = 10^(-4.97) M_solar/yr, a bolometric luminosity of log L/L_solar = 4.88, and a stellar temperature of T_* = 47 kK are derived, by fitting the observed spectrum with a specific Potsdam Wolf-Rayet (PoWR) model. The magnitude in V-band varies between 13.95 and 14.14 mag, while no period is found. Based on the optical spectra, the time domain data, and the indices of the astrometric solution of the Gaia data, WR 121-16 is likely a transitional WN/C single star rather than a WN+WC binary.
252 - P. M. Williams 2013
Infrared photometry of the probable triple WC4(+O?)+O8I: Wolf-Rayet system HD 36402 (= BAT99-38) in the Large Magellanic Cloud (LMC) shows emission characteristic of heated dust. The dust emission is variable on a time-scale of years, with a period n ear 4.7 yr, possibly associated with orbital motion of the O8 supergiant and the inner P ~ 3.03-d WC4+O binary. The phase of maximum dust emission is close to that of the X-ray minimum, consistent with both processes being tied to colliding wind effects in an elliptical binary orbit. It is evident that Wolf-Rayet dust formation occurs also in metal-poor environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا