ﻻ يوجد ملخص باللغة العربية
Suppose we have a pair of information channels, $kappa_{1},kappa_{2}$, with a common input. The Blackwell order is a partial order over channels that compares $kappa_{1}$ and $kappa_{2}$ by the maximal expected utility an agent can obtain when decisions are based on the channel outputs. Equivalently, $kappa_{1}$ is said to be Blackwell-inferior to $kappa_{2}$ if and only if $kappa_{1}$ can be constructed by garbling the output of $kappa_{2}$. A related partial order stipulates that $kappa_{2}$ is more capable than $kappa_{1}$ if the mutual information between the input and output is larger for $kappa_{2}$ than for $kappa_{1}$ for any distribution over inputs. A Blackwell-inferior channel is necessarily less capable. However, examples are known where $kappa_{1}$ is less capable than $kappa_{2}$ but not Blackwell-inferior. We show that this may even happen when $kappa_{1}$ is constructed by coarse-graining the inputs of $kappa_{2}$. Such a coarse-graining is a special kind of pre-garbling of the channel inputs. This example directly establishes that the expected value of the shared utility function for the coarse-grained channel is larger than it is for the non-coarse-grained channel. This contradicts the intuition that coarse-graining can only destroy information and lead to inferior channels. We also discuss our results in the context of information decompositions.
Blackwells theorem shows the equivalence of two preorders on the set of information channels. Here, we restate, and slightly generalize, his result in terms of random variables. Furthermore, we prove that the corresponding partial order is not a latt
A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifo
We consider the application of fluctuation relations to the dynamics of coarse-grained systems, as might arise in a hypothetical experiment in which a system is monitored with a low-resolution measuring apparatus. We analyze a stochastic, Markovian j
Within the discrete gauge theory which is the basis of spin foam models, the problem of macroscopically faithful coarse graining is studied. Macroscopic data is identified; it contains the holonomy evaluation along a discrete set of loops and the hom
Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of obs