ﻻ يوجد ملخص باللغة العربية
Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a ``quasiclassical realm this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.
Stochastic modelling of complex systems plays an essential, yet often computationally intensive role across the quantitative sciences. Recent advances in quantum information processing have elucidated the potential for quantum simulators to exhibit m
In studying the predictability of emergent phenomena in complex systems, Israeli & Goldenfeld (Phys. Rev. Lett., 2004; Phys. Rev. E, 2006) showed how to coarse-grain (elementary) cellular automata (CA). Their algorithm for finding coarse-grainings of
We explore a systematic approach to studying the dynamics of evolving networks at a coarse-grained, system level. We emphasize the importance of finding good observables (network properties) in terms of which coarse grained models can be developed. W
We extend classical coarse-grained entropy, commonly used in many branches of physics, to the quantum realm. We find two coarse-grainings, one using measurements of local particle numbers and then total energy, and the second using local energy measu
We develop a systematic coarse graining procedure for systems of $N$ qubits. We exploit the underlying geometrical structures of the associated discrete phase space to produce a coarse-grained version with reduced effective size. Our coarse-grained s