ﻻ يوجد ملخص باللغة العربية
Within the discrete gauge theory which is the basis of spin foam models, the problem of macroscopically faithful coarse graining is studied. Macroscopic data is identified; it contains the holonomy evaluation along a discrete set of loops and the homotopy classes of certain maps. When two configurations share this data they are related by a local deformation. The interpretation is that such configurations differ by microscopic details. In many cases the homotopy type of the relevant maps is trivial for every connection; two important cases in which the homotopy data is composed by a set of integer numbers are: (i) a two dimensional base manifold and structure group U(1), (ii) a four dimensional base manifold and structure group SU(2). These cases are relevant for spin foam models of two dimensional gravity and four dimensional gravity respectively. This result suggests that if spin foam models for two-dimensional and four-dimensional gravity are modified to include all the relevant macroscopic degrees of freedom -the complete collection of macroscopic variables necessary to ensure faithful coarse graining-, then they could provide appropriate effective theories at a given scale.
A background-independent route towards a universal continuum limit in discrete models of quantum gravity proceeds through a background-independent form of coarse graining. This review provides a pedagogical introduction to the conceptual ideas underl
We provide an exact mapping between the Galilian gauge theory, recently advocated by us cite{BMM1, BMM2, BM}, and the Poincare gauge theory. Applying this correspondence we provide a vielbein approach to the geometric formulation of Newtons gravity w
Parallel transport as dictated by a gauge field determines a collection of local reference systems. Comparing local reference systems in overlapping regions leads to an ensemble of algebras of relational kinematical observables for gauge theories inc
Kolmogorov wave turbulence plays an important role for the thermalization process following plasma instabilities in nonabelian gauge theories. We show that classical-statistical simulations in SU(2) gauge theory indicate a Kolmogorov scaling exponent
Ghost-free bimetric theory describes two nonlinearly interacting spin-2 fields, one massive and one massless, thus extending general relativity. We confront bimetric theory with observations of Supernovae type 1a, Baryon Acoustic Oscillations and the